Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

计算机科学 可视化 背景(考古学) 数据可视化 优势和劣势 人工智能 视觉分析 人机交互 亮度 创造性可视化 生物 认识论 哲学 古生物学
作者
Laura E. Matzen,Michael Joseph Haass,Kristin Divis,Zhiyuan Wang,Andrew T. Wilson
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:24 (1): 563-573 被引量:52
标识
DOI:10.1109/tvcg.2017.2743939
摘要

Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雁夜完成签到,获得积分10
刚刚
Lily完成签到,获得积分10
刚刚
陈雨欣发布了新的文献求助10
2秒前
迎海完成签到,获得积分10
2秒前
2秒前
科目三应助嘟嘟采纳,获得30
3秒前
3秒前
Harper完成签到,获得积分10
4秒前
斯文败类应助神内小大夫采纳,获得10
4秒前
CipherSage应助逃离大西北采纳,获得20
4秒前
爱吃西瓜的llily完成签到,获得积分10
4秒前
冷艳大侠完成签到,获得积分10
5秒前
风起完成签到,获得积分10
6秒前
Xiaopan完成签到 ,获得积分10
7秒前
Coral369发布了新的文献求助10
7秒前
8秒前
tesla完成签到 ,获得积分10
11秒前
风起发布了新的文献求助10
13秒前
双子苦糖完成签到,获得积分10
15秒前
16秒前
16秒前
蘑菇发布了新的文献求助10
19秒前
彩虹完成签到,获得积分10
20秒前
今后应助琳科研_文献采纳,获得10
20秒前
20秒前
科研通AI2S应助Solar energy采纳,获得10
20秒前
21秒前
岁华完成签到,获得积分20
21秒前
luo完成签到,获得积分10
22秒前
22秒前
Shutai发布了新的文献求助30
23秒前
领导范儿应助大娱乐家采纳,获得10
24秒前
空溟fever发布了新的文献求助20
25秒前
ccl发布了新的文献求助10
25秒前
25秒前
汤圆呢醒醒完成签到,获得积分10
26秒前
27秒前
27秒前
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3318807
求助须知:如何正确求助?哪些是违规求助? 2950181
关于积分的说明 8550346
捐赠科研通 2627227
什么是DOI,文献DOI怎么找? 1437599
科研通“疑难数据库(出版商)”最低求助积分说明 666357
邀请新用户注册赠送积分活动 652260