Real-time EEG-defined excitability states determine efficacy of TMS-induced plasticity in human motor cortex

磁刺激 神经科学 运动皮层 脑电图 刺激 长时程增强 节奏 初级运动皮层 电动机系统 经颅交流电刺激 神经可塑性 心理学 医学 内科学 受体
作者
Christoph Zrenner,Debora Desideri,Paolo Belardinelli,Ulf Ziemann
出处
期刊:Brain Stimulation [Elsevier]
卷期号:11 (2): 374-389 被引量:353
标识
DOI:10.1016/j.brs.2017.11.016
摘要

Background Rapidly changing excitability states in an oscillating neuronal network can explain response variability to external stimulation, but if repetitive stimulation of always the same high- or low-excitability state results in long-term plasticity of opposite direction has never been explored in vivo. Objective/hypothesis Different phases of the endogenous sensorimotor μ-rhythm represent different states of corticospinal excitability, and repetitive transcranial magnetic stimulation (rTMS) of always the same high- vs. low-excitability state results in long-term plasticity of different direction. Methods State-dependent electroencephalography-triggered transcranial magnetic stimulation (EEG-TMS) was applied to target the EEG negative vs. positive peak of the sensorimotor μ-rhythm in healthy subjects using a millisecond resolution real-time digital signal processing system. Corticospinal excitability was indexed by motor evoked potential amplitude in a hand muscle. Results EEG negative vs. positive peak of the endogenous sensorimotor μ-rhythm represent high- vs. low-excitability states of corticospinal neurons. More importantly, otherwise identical rTMS (200 triple-pulses at 100 Hz burst frequency and ∼1 Hz repetition rate), triggered consistently at this high-excitability vs. low-excitability state, leads to long-term potentiation (LTP)-like vs. no change in corticospinal excitability. Conclusions Findings raise the intriguing possibility that real-time information of instantaneous brain state can be utilized to control efficacy of plasticity induction in humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害怕的小懒虫完成签到,获得积分10
刚刚
思源应助Nefelibata采纳,获得10
1秒前
妮儿发布了新的文献求助10
1秒前
BareBear应助rosa采纳,获得10
1秒前
沉默凡桃发布了新的文献求助10
2秒前
Orange应助9℃采纳,获得10
2秒前
2秒前
一只橘子完成签到 ,获得积分10
2秒前
3秒前
韭黄发布了新的文献求助10
3秒前
西瓜发布了新的文献求助10
3秒前
Ll发布了新的文献求助10
3秒前
3秒前
wcy关注了科研通微信公众号
3秒前
4秒前
4秒前
CipherSage应助爱喝冰可乐采纳,获得10
5秒前
5秒前
bdvdsrwteges完成签到,获得积分10
5秒前
鱼雷完成签到,获得积分10
6秒前
6秒前
天天快乐应助喜洋洋采纳,获得10
6秒前
PANSIXUAN完成签到 ,获得积分10
7秒前
善良香岚发布了新的文献求助10
7秒前
7秒前
huizi完成签到,获得积分20
7秒前
RichardZ完成签到,获得积分10
7秒前
7秒前
左左发布了新的文献求助10
8秒前
执着的怜寒应助哈哈哈haha采纳,获得40
8秒前
Cassie完成签到 ,获得积分10
9秒前
9秒前
雄i完成签到,获得积分10
9秒前
Chenly完成签到,获得积分10
10秒前
科目三应助韭黄采纳,获得10
10秒前
10秒前
轻松笙发布了新的文献求助10
10秒前
12秒前
12秒前
a1oft发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759