磷酸二酯酶
核苷酸
鸟苷
生物化学
立体化学
腺苷
酶
环核苷酸结合域
结合位点
生物
化学
基因
作者
Feng Wang,Qing He,Kaixuan Su,Tiandi Wei,Sujuan Xu,Lichuan Gu
摘要
The Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterases (PDEs) that catalyze degradation of cyclic di-adenosine monophosphate (c-di-AMP) could be subdivided into two subfamilies based on the final product [5′-phosphadenylyl-adenosine (5′-pApA) or AMP]. In a previous study, we revealed that Rv2837c, a stand-alone DHH/DHHA1 PDE, employs a 5′-pApA internal flipping mechanism to produce AMPs. However, why the membrane-bound DHH/DHHA1 PDE can only degrade c-di-AMP to 5′-pApA remains obscure. Here, we report the crystal structure of the DHH/DHHA1 domain of GdpP (GdpP-C), and structures in complex with c-di-AMP, cyclic di-guanosine monophosphate (c-di-GMP), and 5′-pApA. Structural analysis reveals that GdpP-C binds nucleotide substrates quite differently from how Rv2837c does in terms of substrate-binding position. Accordingly, the nucleotide-binding site of the DHH/DHHA1 PDEs is organized into three (C, G, and R) subsites. For GdpP-C, in the C and G sites c-di-AMP binds and degrades into 5′-pApA, and its G site determines nucleotide specificity. To further degrade into AMPs, 5′-pApA must slide into the C and R sites for flipping and hydrolysis as in Rv2837c. Subsequent mutagenesis and enzymatic studies of GdpP-C and Rv2837c uncover the complete flipping process and reveal a unified catalytic mechanism for members of both DHH/DHHA1 PDE subfamilies.
科研通智能强力驱动
Strongly Powered by AbleSci AI