微尺度化学
材料科学
制作
再结晶(地质)
3D打印
铜
纳米技术
图层(电子)
微观结构
复合材料
光电子学
冶金
医学
古生物学
替代医学
数学
数学教育
病理
生物
作者
Ali Behroozfar,Soheil Daryadel,S.R. Morsali,Salvador Moreno,Mahmoud Baniasadi,Rodrigo A. Bernal,Majid Minary‐Jolandan
标识
DOI:10.1002/adma.201705107
摘要
Nanotwinned (nt)-metals exhibit superior mechanical and electrical properties compared to their coarse-grained and nanograined counterparts. nt-metals in film and bulk forms are obtained using physical and chemical processes including pulsed electrodeposition (PED), plastic deformation, recrystallization, phase transformation, and sputter deposition. However, currently, there is no process for 3D printing (additive manufacturing) of nt-metals. Microscale 3D printing of nt-Cu is demonstrated with high density of coherent twin boundaries using a new room temperature process based on localized PED (L-PED). The 3D printed nt-Cu is fully dense, with low to none impurities, and low microstructural defects, and without obvious interface between printed layers, which overall result in good mechanical and electrical properties, without any postprocessing steps. The L-PED process enables direct 3D printing of layer-by-layer and complex 3D microscale nt-Cu structures, which may find applications for fabrication of metamaterials, sensors, plasmonics, and micro/nanoelectromechanical systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI