An Integrated Prognostics Method for Failure Time Prediction of Gears Subject to the Surface Wear Failure Mode

预言 失效模式及影响分析 结构工程 工程类 刀具磨损 模式(计算机接口) 可靠性工程 机械工程 计算机科学 操作系统 机械加工
作者
Fuqiong Zhao,Zhigang Tian,Xihui Liang,Mingjiang Xie
出处
期刊:IEEE Transactions on Reliability [Institute of Electrical and Electronics Engineers]
卷期号:67 (1): 316-327 被引量:30
标识
DOI:10.1109/tr.2017.2781147
摘要

Surface wear is one of the main failure modes that gears suffer from due to the sliding contact in the mesh process. However, the existing gear prognostics methods mainly focused on the fatigue cracking failure mode and the existing prediction methods considering surface wear are physics based without utilizing condition monitoring data. This paper proposes the first integrated prognostics method for failure time prediction of gears subject to the surface wear failure mode, utilizing both physical models, i.e., Archard's wear model and condition monitoring data, i.e., inspection data on gear mass loss in this study. By noticing the importance of the wear coefficient in Archard's model, the proposed method can result in a more accurate value of the wear coefficient so that the wear evolution in the future is forecasted with more accuracy. To achieve this, a Bayesian update process is implemented to incorporate the mass loss observation at an inspection point to determine the posterior distribution of the wear coefficient. With more mass loss data available, this posterior distribution gets narrower and its mean approaches the actual value of the coefficient. To use Archard' model, the gear mesh geometry and Hertz contact theory are applied to compute the sliding distance and the contact pressure for different points on the tooth flank. The proposed method is validated using run-to-failure experiments with a planetary gearbox test rig.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
123发布了新的文献求助10
刚刚
美好南晴发布了新的文献求助10
1秒前
科研波比发布了新的文献求助10
1秒前
1秒前
橡树果果完成签到,获得积分10
1秒前
CipherSage应助许哆哆采纳,获得10
2秒前
3秒前
3秒前
土豆鱼发布了新的文献求助10
3秒前
蓝色花生豆完成签到,获得积分0
4秒前
4秒前
拥一人入怀完成签到,获得积分10
4秒前
简单生活完成签到 ,获得积分10
5秒前
荔枝发布了新的文献求助10
5秒前
5秒前
5秒前
simdows发布了新的文献求助10
6秒前
冯子如发布了新的文献求助10
7秒前
拼搏向上发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
JamesPei应助负责中恶采纳,获得10
7秒前
8秒前
9秒前
科研通AI6应助谦让的口红采纳,获得10
9秒前
Kiwi发布了新的文献求助10
9秒前
庄默羽完成签到,获得积分10
11秒前
ztt关闭了ztt文献求助
11秒前
等待晓筠发布了新的文献求助10
11秒前
12秒前
无极微光应助迷人的冰旋采纳,获得20
12秒前
13秒前
美好南晴完成签到,获得积分10
13秒前
maizhan发布了新的文献求助20
13秒前
Hello应助fx采纳,获得10
13秒前
无奈的迎丝完成签到 ,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396