Comparison of the degradation of molecular and ionic ibuprofen in a UV/H2O2 system

化学 量子产额 反应速率常数 光解 降级(电信) 水溶液 离子强度 摩尔吸收率 动力学 离子键合 产量(工程) 羟基自由基 清除 光化学 核化学 激进的 荧光 有机化学 离子 材料科学 物理 光学 冶金 电信 量子力学 抗氧化剂 计算机科学
作者
Rongkui Su,Liyuan Chai,Chong-Jian Tang,Bo Li,Zhihui Yang
出处
期刊:Water Science and Technology [IWA Publishing]
卷期号:77 (9): 2174-2183 被引量:10
标识
DOI:10.2166/wst.2018.129
摘要

Abstract The advanced oxidation technologies based on •OH can effectively degrade the pharmaceutical and personal care products under operating conditions of normal temperature and pressure. In this study, direct photolysis of ibuprofen (IBU) is slow due to the relatively low molar extinction coefficient and quantum yield. Compared to direct photolysis, the degradation kinetics of IBU was significantly enhanced in the UV/H2O2 system, mainly by •OH radical mediated oxidation. In the UV/H2O2 system, the degradation rate of ionic IBU was slightly faster than that of the molecular form. Kinetic analysis showed that the second-order reaction rate constant of ionic IBU (5.51 × 109 M−1 s−1) was higher than that of the molecular form (3.43 × 109 M−1 s−1). The pseudo first-order rate constant for IBU degradation (kobs) increased with increasing H2O2 dosage. kobs can be significantly decreased in the presence of natural organic matter (NOM), which is due to (i) NOM radical scavenging effects (dominant role) and (ii) UV absorption. The degradation of IBU was inhibited by HCO3–, which was attributed to its scavenging effect. Interestingly, when NO3– was present in aqueous solution, a slight increase in the degradation rate was observed, which was due to NO3– absorbing photons to generate •OH at a low quantum yield. No obvious effects were observed when SO42 and Cl− were present.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可达燊应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Leif应助科研通管家采纳,获得10
1秒前
shouyu29应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
细心觅风完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
人福药业应助Sunrise采纳,获得10
2秒前
科研人完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
bkagyin应助Mr_Hao采纳,获得20
3秒前
研友_VZG7GZ应助无辜洋葱采纳,获得10
3秒前
3秒前
李李完成签到,获得积分10
4秒前
超级水壶发布了新的文献求助10
4秒前
4秒前
4秒前
张自信发布了新的文献求助10
6秒前
开灯人和关灯人完成签到,获得积分10
6秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
6秒前
华仔应助qiqi采纳,获得10
7秒前
Rebecca完成签到,获得积分10
7秒前
7秒前
8秒前
Mlwwq发布了新的文献求助10
8秒前
领导范儿应助长情洙采纳,获得10
8秒前
洋洋完成签到,获得积分20
9秒前
Owen应助WY采纳,获得30
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762