Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review

残余应力 选择性激光熔化 材料科学 航空航天 微观结构 过程(计算) 多孔性 机械工程 工艺工程 钛合金 马氏体 计算机科学 复合材料 冶金 工程类 航空航天工程 合金 操作系统
作者
Harry Shipley,D. McDonnell,Mark Culleton,Richard Coull,Rocco Lupoi,Garret E. O’Donnell,Daniel Trimble
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier BV]
卷期号:128: 1-20 被引量:497
标识
DOI:10.1016/j.ijmachtools.2018.01.003
摘要

Selective Laser Melting (SLM) is an additive manufacturing (AM) technique which has been heavily investigated for the processing of Ti-6Al-4V (Ti64) which is used in the biomedical, aerospace and other industries. To date the SLM processing of this material has been inhibited by the requirement of post processes due to three primary challenges of martensitic microstructures, undesired porosity and residual stresses which are present in the as-built state. This work identifies the state of the art in process optimisation which is being used to confront these challenges in the as-built state with a view to removing the reliance on post processing. Regarding process optimisation, maximising part density is the primary goal due to the negative influence of pores on fracture and fatigue properties. To accomplish this, a high energy input is required which results in high cooling rates during processing. It is these cooling rates which are instrumental in the microstructural evolution and residual stress production. Accordingly novel methods have been proposed which aim to maintain the necessary high level of energy input but control the cooling rates to tailor the microstructure and reduce residual stresses. Research gaps have been identified pertaining to all three of these challenges when considering mechanical properties of as-built components. Thus in its current state post processes remain critical, however promising techniques in early stage development provide encouragement going forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仁清发布了新的文献求助10
1秒前
卓儿发布了新的文献求助10
1秒前
1秒前
2秒前
yk发布了新的文献求助10
2秒前
危机的尔蝶完成签到,获得积分10
2秒前
2秒前
张童鞋完成签到 ,获得积分10
2秒前
KZxxx发布了新的文献求助10
3秒前
3秒前
3秒前
欢也零星完成签到,获得积分10
3秒前
qizhang完成签到,获得积分10
3秒前
4秒前
5秒前
Jasper应助bofu采纳,获得10
5秒前
FashionBoy应助zzx采纳,获得10
5秒前
隐形曼青应助无限亦寒采纳,获得10
6秒前
xu完成签到,获得积分10
6秒前
Owen应助乖猴猴采纳,获得10
6秒前
俊逸兰谷完成签到,获得积分10
6秒前
xinanan发布了新的文献求助10
7秒前
于于发布了新的文献求助10
7秒前
Liuzihao发布了新的文献求助10
7秒前
玺青一生完成签到 ,获得积分10
8秒前
9秒前
9秒前
威威完成签到,获得积分10
9秒前
nini发布了新的文献求助10
9秒前
super chan发布了新的文献求助100
10秒前
11秒前
dddb完成签到,获得积分10
12秒前
Lucas应助bofu采纳,获得10
12秒前
13秒前
KZxxx完成签到,获得积分20
13秒前
14秒前
肥肥凤梨完成签到,获得积分10
14秒前
时尚羿完成签到,获得积分20
14秒前
15秒前
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300