超级电容器
MXenes公司
假电容器
材料科学
电容
重量分析
储能
纳米技术
电极
碳化物
过渡金属
光电子学
碳纤维
复合材料
功率(物理)
化学
复合数
物理
物理化学
催化作用
量子力学
有机化学
生物化学
作者
Maria R. Lukatskaya,Sankalp Kota,Zifeng Lin,Meng‐Qiang Zhao,Netanel Shpigel,Mikhael D. Levi,Joseph Halim,Pierre‐Louis Taberna,Michel W. Barsoum,Patrice Simon,Yury Gogotsi
出处
期刊:Nature Energy
[Springer Nature]
日期:2017-07-10
卷期号:2 (8)
被引量:1904
标识
DOI:10.1038/nenergy.2017.105
摘要
The use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g−1 at scan rates of 10 V s−1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ∼1,500 F cm−3 reaching the previously unmatched volumetric performance of RuO2. Pseudocapacitors based on redox-active materials have relatively high energy density but suffer from low power capability. Here the authors report that two-dimensional transition metal carbides exhibit high gravimetric, volumetric and areal capacitance values at high charge/discharge rates.
科研通智能强力驱动
Strongly Powered by AbleSci AI