SIRT3
非酒精性脂肪肝
SOD2
安普克
氧化应激
脂肪变性
线粒体
活性氧
锡尔图因
药理学
脂肪肝
生物
内科学
内分泌学
化学
超氧化物歧化酶
生物化学
蛋白激酶A
激酶
医学
NAD+激酶
酶
疾病
作者
Xianglong Zeng,Jining Yang,Ou Hu,Juan Huang,Ran Li,Mengting Chen,Yu Zhang,Xi Zhou,Jundong Zhu,Qianyong Zhang,Long Yi,Mantian Mi
标识
DOI:10.1089/ars.2017.7172
摘要
Aims: Our previous clinical trial indicated that the flavonoid dihydromyricetin (DHM) could improve hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD), altough the potential mechanisms of these effects remained elusive. Here, we investigated the hepatoprotective role of DHM on high-fat diet (HFD)-induced NAFLD. Results: DHM supplementation could effectively ameliorate the development of NAFLD by inhibiting hepatic lipid accumulation both in HFD-fed wild-type mice and in palmitic acid-induced hepatocytes. We reveal for the first time that mitochondrial dysfunction characterized by ATP depletion and augmented oxidative stress could be reversed by DHM treatment. Moreover, DHM enhanced the mitochondrial respiratory capacity by increasing the expression and enzymatic activities of mitochondrial complexes and increased mitochondrial reactive oxygen species scavenging by restoring manganese superoxide dismutase (SOD2) activity. Interestingly, the benefits of DHM were abrogated in SIRT3 knockout (SIRT3KO) mice and in hepatocytes transfected with SIRT3 siRNA or treated with an SIRT3-specific inhibitor. We further showed that DHM could increase SIRT3 expression by activating the adenosine monophosphate-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC1α)/estrogen-related receptor-α (ERRα) signaling pathway. Innovation: Our work indicates that SIRT3 plays a critical role in the DHM-mediated beneficial effects that include ameliorating mitochondrial dysfunction and oxidative stress in a nutritional NAFLD model both in vivo and in vitro. Conclusion: Our results suggest that DHM prevents NAFLD by improving mitochondrial respiratory capacity and redox homeostasis in hepatocytes through a SIRT3-dependent mechanism. These results could provide a foundation to identify new DHM-based preventive and therapeutic strategies for NAFLD.
科研通智能强力驱动
Strongly Powered by AbleSci AI