Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation

材料科学 压电 组织工程 间充质干细胞 脚手架 生物医学工程 软骨发生 再生医学 细胞生物学 干细胞 生物材料 纳米技术 软骨 细胞分化 细胞外基质 化学 复合材料 解剖 生物 工程类 基因 生物化学
作者
Sita M. Damaraju,Yueyang Shen,Ezinwa Elele,Andreas Acrivos,Ahmad Eshghinejad,Jiangyu Li,Michael Jaffé,Treena Livingston Arinzeh
出处
期刊:Biomaterials [Elsevier]
卷期号:149: 51-62 被引量:199
标识
DOI:10.1016/j.biomaterials.2017.09.024
摘要

The discovery of electric fields in biological tissues has led to efforts in developing technologies utilizing electrical stimulation for therapeutic applications. Native tissues, such as cartilage and bone, exhibit piezoelectric behavior, wherein electrical activity can be generated due to mechanical deformation. Yet, the use of piezoelectric materials have largely been unexplored as a potential strategy in tissue engineering, wherein a piezoelectric biomaterial acts as a scaffold to promote cell behavior and the formation of large tissues. Here we show, for the first time, that piezoelectric materials can be fabricated into flexible, three-dimensional fibrous scaffolds and can be used to stimulate human mesenchymal stem cell differentiation and corresponding extracellular matrix/tissue formation in physiological loading conditions. Piezoelectric scaffolds that exhibit low voltage output, or streaming potential, promoted chondrogenic differentiation and piezoelectric scaffolds with a high voltage output promoted osteogenic differentiation. Electromechanical stimulus promoted greater differentiation than mechanical loading alone. Results demonstrate the additive effect of electromechanical stimulus on stem cell differentiation, which is an important design consideration for tissue engineering scaffolds. Piezoelectric, smart materials are attractive as scaffolds for regenerative medicine strategies due to their inherent electrical properties without the need for external power sources for electrical stimulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助书生采纳,获得10
1秒前
1秒前
执念完成签到 ,获得积分10
1秒前
2秒前
3秒前
47完成签到,获得积分20
3秒前
cs完成签到,获得积分10
4秒前
4秒前
小丁呀完成签到 ,获得积分20
6秒前
qks完成签到 ,获得积分10
6秒前
6秒前
奋斗盼旋发布了新的文献求助10
7秒前
xi完成签到 ,获得积分10
7秒前
尼古拉斯擦擦蹦完成签到,获得积分10
8秒前
若枫完成签到,获得积分20
8秒前
guo完成签到,获得积分10
8秒前
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
Sindyyyyyy应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得50
9秒前
Jennifer应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
10秒前
Ao应助科研通管家采纳,获得20
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
wys2493发布了新的文献求助10
10秒前
honting完成签到,获得积分10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
伶俐从筠应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
ding应助连冷安采纳,获得10
11秒前
Zero完成签到,获得积分10
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311845
求助须知:如何正确求助?哪些是违规求助? 2944668
关于积分的说明 8520492
捐赠科研通 2620270
什么是DOI,文献DOI怎么找? 1432725
科研通“疑难数据库(出版商)”最低求助积分说明 664756
邀请新用户注册赠送积分活动 650053