Vibration feature extraction using signal processing techniques for structural health monitoring: A review

信号处理 结构健康监测 信号(编程语言) 频域 计算机科学 时域 特征提取 振动 航空航天 领域(数学) 工程类 人工智能 模式识别(心理学) 电子工程 结构工程 声学 数字信号处理 计算机视觉 物理 航空航天工程 程序设计语言 纯数学 数学
作者
Chunwei Zhang,Asma Alsadat Mousavi,Sami F. Masri,Gholamreza Gholipour,Kai Yan,Xiuling Li
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:177: 109175-109175 被引量:95
标识
DOI:10.1016/j.ymssp.2022.109175
摘要

Structural health monitoring (SHM) has become an important and hot topic for decades in various fields of civil, mechanical, automotive, and aerospace engineering, etc. Estimating the health condition and understanding the unique characteristics of structures through assessing measured physical parameters in real-time is the major objective of SHM. As a result, signal processing becomes an essential and inseparable approach of vibration based SHM research. The basic goal of using signal processing is to identify the changes or damages from the vibration signals of the dynamic system to detect, locate, and quantify any damages existing in the system. This paper aims to present a comprehensive review of the recent progress that used signal processing techniques for vibration based SHM approaches. Furthermore, the feature extraction process through the signal processing techniques is the basic skeleton of this review. The application of signal processing techniques in structural damage identification procedure is classified into two approaches, namely (i) time-domain and (ii) frequency-domain. Experimental studies have assessed the potentials of the signal processing techniques in two aforementioned domains to enhance the vibration-based structural damage detection subjected to environmental effects. While there have been multiple review studies published on vibration-based structural damage detection, there exists no study in categorizing the signal processing techniques based on the feature extraction procedure that belongs to time and frequency domains for SHM purposes. This review fills this gap and presents a holistic summary of the cutting-edge methodology and technique applied in the relevant research field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
znnnnnnnnnn完成签到 ,获得积分10
1秒前
陈甸甸完成签到,获得积分10
2秒前
田様应助机智的瑾瑜采纳,获得10
2秒前
春夏秋冬发布了新的文献求助10
3秒前
微风徐徐发布了新的文献求助20
4秒前
4秒前
4秒前
6秒前
我是老大应助艺_采纳,获得10
6秒前
6秒前
打打应助甜蜜代曼采纳,获得10
7秒前
7秒前
香蕉觅云应助春夏秋冬采纳,获得10
8秒前
粥粥舟完成签到,获得积分10
8秒前
LSS发布了新的文献求助10
8秒前
fengw420完成签到,获得积分10
9秒前
9秒前
kyf完成签到,获得积分10
9秒前
10秒前
10秒前
Akim应助theThreeMagi采纳,获得10
10秒前
10秒前
NexusExplorer应助学术laji采纳,获得10
10秒前
bkagyin应助myl采纳,获得10
11秒前
野草发布了新的文献求助10
11秒前
11秒前
hoho完成签到,获得积分10
12秒前
赘婿应助kingjames采纳,获得10
13秒前
6666发布了新的文献求助10
13秒前
13秒前
虚幻绿凝发布了新的文献求助10
14秒前
大红发布了新的文献求助10
15秒前
xiaohao完成签到 ,获得积分10
16秒前
16秒前
dongfang发布了新的文献求助10
16秒前
16秒前
18秒前
失眠的怀柔完成签到 ,获得积分10
18秒前
YANGLan发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685