Deep learning-based brain age prediction in normal aging and dementia

痴呆 心理学 神经科学 疾病 脑老化 认知 医学 人工智能 计算机科学 内科学
作者
Jeyeon Lee,Brian J. Burkett,Hoon‐Ki Min,Matthew L. Senjem,Emily S. Lundt,Hugo Botha,Jonathan Graff‐Radford,Leland R Barnard,Jeffrey L. Gunter,Christopher G. Schwarz,Kejal Kantarci,David S. Knopman,Bradley F. Boeve,Val J. Lowe,Ronald C. Petersen,Clifford R. Jack,David T. Jones
出处
期刊:Nature Aging 卷期号:2 (5): 412-424 被引量:183
标识
DOI:10.1038/s43587-022-00219-7
摘要

Brain aging is accompanied by patterns of functional and structural change. Alzheimer’s disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging. The authors developed a deep learning-based model to estimate the brain age gap based on metabolic and structural imaging data in cognitively normal individuals and in patients with dementia. An older brain age was associated with Alzheimer’s disease biomarkers and was predictive of future cognitive decline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng发布了新的文献求助10
刚刚
乐乐应助轻舟空渡采纳,获得10
刚刚
刚刚
从容灭绝发布了新的文献求助60
刚刚
刚刚
高贵振家发布了新的文献求助30
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
勤恳的语蓉完成签到,获得积分10
1秒前
yaooo发布了新的文献求助10
1秒前
菠萝冰完成签到,获得积分10
2秒前
星辰大海应助搬砖小羊采纳,获得10
2秒前
Erica完成签到,获得积分10
3秒前
balabala完成签到,获得积分10
3秒前
3秒前
wanci应助sen123采纳,获得10
4秒前
liu_zt完成签到,获得积分10
4秒前
Hindiii完成签到,获得积分10
4秒前
4秒前
无辜大神完成签到,获得积分10
4秒前
拓海海完成签到,获得积分20
5秒前
lyric完成签到,获得积分10
5秒前
5秒前
Silvia完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
虚幻的大山关注了科研通微信公众号
6秒前
吞吞完成签到 ,获得积分10
7秒前
义气的钥匙完成签到,获得积分10
7秒前
哈哈哈应助执着采纳,获得20
7秒前
Riggle G发布了新的文献求助10
8秒前
xzy完成签到,获得积分10
8秒前
今后应助肉卷采纳,获得10
8秒前
MM11111完成签到,获得积分10
8秒前
呼延坤发布了新的文献求助10
9秒前
自觉的小蝴蝶完成签到,获得积分10
9秒前
今天发CNS了嘛完成签到,获得积分10
9秒前
傅寒天完成签到,获得积分10
9秒前
恋如雪止应助笑点低曼文采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027