Deep learning-based brain age prediction in normal aging and dementia

痴呆 心理学 神经科学 疾病 脑老化 认知 医学 人工智能 计算机科学 内科学
作者
Jeyeon Lee,Brian J. Burkett,Hoon‐Ki Min,Matthew L. Senjem,Emily S. Lundt,Hugo Botha,Jonathan Graff‐Radford,Leland R Barnard,Jeffrey L. Gunter,Christopher G. Schwarz,Kejal Kantarci,David S. Knopman,Bradley F. Boeve,Val J. Lowe,Ronald C. Petersen,Clifford R. Jack,David T. Jones
出处
期刊:Nature Aging 卷期号:2 (5): 412-424 被引量:140
标识
DOI:10.1038/s43587-022-00219-7
摘要

Brain aging is accompanied by patterns of functional and structural change. Alzheimer’s disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging. The authors developed a deep learning-based model to estimate the brain age gap based on metabolic and structural imaging data in cognitively normal individuals and in patients with dementia. An older brain age was associated with Alzheimer’s disease biomarkers and was predictive of future cognitive decline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助Xx采纳,获得30
1秒前
科研通AI6应助王三采纳,获得10
1秒前
vidotto发布了新的文献求助10
1秒前
Elliot应助curlycai采纳,获得10
1秒前
浮游应助迷人成协采纳,获得10
1秒前
FashionBoy应助cjypdf采纳,获得10
1秒前
2秒前
善学以致用应助Recycling采纳,获得10
2秒前
ChenXY完成签到,获得积分10
2秒前
油麦菜完成签到,获得积分10
2秒前
小次郎完成签到,获得积分20
2秒前
3秒前
纸质超人发布了新的文献求助10
3秒前
3秒前
ze完成签到 ,获得积分10
4秒前
5秒前
郝郝完成签到,获得积分10
5秒前
王子渊发布了新的文献求助10
5秒前
paparazzi221发布了新的文献求助10
6秒前
高兴的代芙完成签到,获得积分10
6秒前
TNT应助Zhijiuz采纳,获得10
7秒前
7秒前
从心发布了新的文献求助10
8秒前
JamesPei应助好吃的香味采纳,获得10
8秒前
OKADM发布了新的文献求助10
8秒前
8秒前
vidotto完成签到,获得积分10
9秒前
rosy发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
流氓恐龙完成签到,获得积分10
10秒前
静静给静静的求助进行了留言
10秒前
11秒前
dzdzn发布了新的文献求助10
11秒前
11秒前
Stanley发布了新的文献求助10
12秒前
鸣笛应助勤奋的如松采纳,获得20
12秒前
12秒前
WentingRao完成签到,获得积分10
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482