已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based brain age prediction in normal aging and dementia

痴呆 心理学 神经科学 疾病 脑老化 认知 医学 人工智能 计算机科学 内科学
作者
Jeyeon Lee,Brian J. Burkett,Hoon‐Ki Min,Matthew L. Senjem,Emily S. Lundt,Hugo Botha,Jonathan Graff‐Radford,Leland R Barnard,Jeffrey L. Gunter,Christopher G. Schwarz,Kejal Kantarci,David S. Knopman,Bradley F. Boeve,Val J. Lowe,Ronald C. Petersen,Clifford R. Jack,David T. Jones
出处
期刊:Nature Aging 卷期号:2 (5): 412-424 被引量:123
标识
DOI:10.1038/s43587-022-00219-7
摘要

Brain aging is accompanied by patterns of functional and structural change. Alzheimer’s disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging. The authors developed a deep learning-based model to estimate the brain age gap based on metabolic and structural imaging data in cognitively normal individuals and in patients with dementia. An older brain age was associated with Alzheimer’s disease biomarkers and was predictive of future cognitive decline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyy完成签到,获得积分10
刚刚
传奇3应助XXH采纳,获得10
2秒前
感动的醉波完成签到,获得积分10
3秒前
3秒前
6秒前
境由心生完成签到,获得积分10
9秒前
sherrydeyu发布了新的文献求助10
10秒前
Mr_Qz发布了新的文献求助10
10秒前
12秒前
14秒前
谨慎天问发布了新的文献求助10
16秒前
ldgsd完成签到,获得积分10
17秒前
66发布了新的文献求助10
19秒前
NexusExplorer应助sherrydeyu采纳,获得10
22秒前
谨慎天问完成签到,获得积分10
23秒前
无敌小宽哥完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
24秒前
SciGPT应助66采纳,获得10
24秒前
丁鹏笑完成签到 ,获得积分0
27秒前
wanci应助齐嘉懿采纳,获得10
29秒前
桃铁完成签到,获得积分10
32秒前
37秒前
38秒前
40秒前
111完成签到,获得积分10
41秒前
22222发布了新的文献求助10
41秒前
ivy发布了新的文献求助30
41秒前
江河湖海完成签到 ,获得积分10
43秒前
齐嘉懿发布了新的文献求助10
43秒前
44秒前
46秒前
48秒前
49秒前
虚幻初之发布了新的文献求助10
51秒前
一番发布了新的文献求助10
55秒前
白了个白完成签到 ,获得积分10
56秒前
56秒前
共享精神应助小远采纳,获得10
57秒前
星河完成签到,获得积分10
58秒前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024