已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-based brain age prediction in normal aging and dementia

痴呆 心理学 神经科学 疾病 脑老化 认知 医学 人工智能 计算机科学 内科学
作者
Jeyeon Lee,Brian J. Burkett,Hoon‐Ki Min,Matthew L. Senjem,Emily S. Lundt,Hugo Botha,Jonathan Graff‐Radford,Leland R Barnard,Jeffrey L. Gunter,Christopher G. Schwarz,Kejal Kantarci,David S. Knopman,Bradley F. Boeve,Val J. Lowe,Ronald C. Petersen,Clifford R. Jack,David T. Jones
出处
期刊:Nature Aging 卷期号:2 (5): 412-424 被引量:183
标识
DOI:10.1038/s43587-022-00219-7
摘要

Brain aging is accompanied by patterns of functional and structural change. Alzheimer’s disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging. The authors developed a deep learning-based model to estimate the brain age gap based on metabolic and structural imaging data in cognitively normal individuals and in patients with dementia. An older brain age was associated with Alzheimer’s disease biomarkers and was predictive of future cognitive decline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助xixixi采纳,获得20
2秒前
2秒前
2秒前
默默的发布了新的文献求助10
5秒前
勇敢牛牛完成签到 ,获得积分10
5秒前
6秒前
yiwan发布了新的文献求助10
6秒前
6秒前
Psy_chi发布了新的文献求助10
7秒前
9秒前
10秒前
mogekkko发布了新的文献求助10
11秒前
雨相所至发布了新的文献求助10
11秒前
12秒前
丘比特应助PhdL采纳,获得30
12秒前
大乐完成签到,获得积分10
13秒前
YZ发布了新的文献求助10
13秒前
香芋完成签到 ,获得积分10
14秒前
lx完成签到,获得积分10
15秒前
Ava应助coolkid采纳,获得10
15秒前
完美世界应助xxs采纳,获得30
16秒前
16秒前
小马甲应助张莜莜采纳,获得10
20秒前
玻璃杯完成签到 ,获得积分10
20秒前
欢喜关注了科研通微信公众号
20秒前
21秒前
21秒前
23秒前
24秒前
隐形曼青应助Anthonyp采纳,获得10
25秒前
25秒前
26秒前
FashionBoy应助hxjnx采纳,获得10
26秒前
Twinkle发布了新的文献求助10
27秒前
wanci应助mermaid采纳,获得10
27秒前
tbc发布了新的文献求助30
27秒前
28秒前
汉堡包应助wu采纳,获得30
30秒前
千枫茂榕发布了新的文献求助10
31秒前
晓晓鹤发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627406
求助须知:如何正确求助?哪些是违规求助? 4713679
关于积分的说明 14962084
捐赠科研通 4784593
什么是DOI,文献DOI怎么找? 2554835
邀请新用户注册赠送积分活动 1516330
关于科研通互助平台的介绍 1476693