已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction

超参数 健康状况 可靠性(半导体) 荷电状态 计算机科学 电压 过程(计算) 人口 可靠性工程 人工智能 功率(物理) 工程类 电池(电) 物理 社会学 人口学 电气工程 操作系统 量子力学
作者
Yan Ma,Ce Shan,Jinwu Gao,Hong Chen
出处
期刊:Energy [Elsevier BV]
卷期号:251: 123973-123973 被引量:151
标识
DOI:10.1016/j.energy.2022.123973
摘要

State of health (SOH) is a crucial challenge to guarantee the reliability and safety of the electric vehicles (EVs), due to the complex aging mechanism. A novel SOH estimation method based on improved long short-term memory (LSTM) and health indicators (HIs) extraction from charging-discharging process is proposed in this paper. In order to overcome the limitation of the measurement of battery capacity in real application, some external characteristic parameters related to voltage, current and temperature are selected from charging-discharging process as HIs to describe the aging mechanism of the batteries. After that, Pearson correlation coefficient is employed to select the HIs, which have high correlations with battery capacity. And neighborhood component analysis (NCA) is used to eliminate redundant information of HIs with high correlation in order to reduce computational burden. Aiming at the problem of hyperparameter selection in LSTM models, differential evolution grey wolf optimizer (DEGWO) is proposed in this paper for hyperparameters optimization. Compared with traditional grey wolf optimizer, which is easy to fall into local optimality, DEGWO updates the population through mutation, crossover and screening operations to obtain the global optimal solution and improve the global search ability. The proposed method is verified based on the dataset of the battery from NASA and MIT. The simulations indicate that the proposed method has higher accuracy for different kinds of batteries. The estimation errors for both datasets are within 1%. Compared with other methods, the estimation evaluation indicators such as RMSE, MAE and MAPE of the proposed method are within 1%, which is much less than the estimation results obtained by other methods. And determination coefficient R2 is above 0.95, which means the proposed method has batter fitting performance. It is also indicated that the method proposed in this paper has higher accuracy, better robustness and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助墨倾池采纳,获得10
1秒前
3秒前
shinn发布了新的文献求助10
3秒前
长安完成签到 ,获得积分10
8秒前
陈海东发布了新的文献求助30
8秒前
优翎发布了新的文献求助10
8秒前
10秒前
香蕉觅云应助ukgiuhilo采纳,获得10
11秒前
12秒前
JamesPei应助shinn采纳,获得10
13秒前
Lucas应助苹果秋灵采纳,获得10
15秒前
啦啦啦完成签到,获得积分10
15秒前
科研小越完成签到,获得积分10
15秒前
yxy303256651发布了新的文献求助10
16秒前
科研通AI5应助08ji72采纳,获得10
19秒前
19秒前
墨倾池发布了新的文献求助10
19秒前
周美言完成签到,获得积分10
19秒前
23秒前
Ggap1完成签到,获得积分10
23秒前
SciGPT应助ddd采纳,获得10
23秒前
彭煜迪完成签到 ,获得积分10
23秒前
WuYiHHH发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
优翎完成签到,获得积分10
26秒前
28秒前
传奇3应助CHAIZH采纳,获得10
28秒前
善学以致用应助TDW采纳,获得10
28秒前
M3L2完成签到,获得积分10
28秒前
苹果秋灵发布了新的文献求助10
29秒前
29秒前
shinn发布了新的文献求助10
29秒前
奇异果完成签到 ,获得积分10
29秒前
沐雨篱边完成签到 ,获得积分10
30秒前
章鱼哥想毕业完成签到 ,获得积分10
30秒前
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968024
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166224
捐赠科研通 3248224
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610