亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction

超参数 健康状况 可靠性(半导体) 荷电状态 计算机科学 电压 过程(计算) 人口 可靠性工程 人工智能 功率(物理) 工程类 电池(电) 物理 人口学 社会学 量子力学 电气工程 操作系统
作者
Yan Ma,Ce Shan,Jinwu Gao,Hong Chen
出处
期刊:Energy [Elsevier]
卷期号:251: 123973-123973 被引量:283
标识
DOI:10.1016/j.energy.2022.123973
摘要

State of health (SOH) is a crucial challenge to guarantee the reliability and safety of the electric vehicles (EVs), due to the complex aging mechanism. A novel SOH estimation method based on improved long short-term memory (LSTM) and health indicators (HIs) extraction from charging-discharging process is proposed in this paper. In order to overcome the limitation of the measurement of battery capacity in real application, some external characteristic parameters related to voltage, current and temperature are selected from charging-discharging process as HIs to describe the aging mechanism of the batteries. After that, Pearson correlation coefficient is employed to select the HIs, which have high correlations with battery capacity. And neighborhood component analysis (NCA) is used to eliminate redundant information of HIs with high correlation in order to reduce computational burden. Aiming at the problem of hyperparameter selection in LSTM models, differential evolution grey wolf optimizer (DEGWO) is proposed in this paper for hyperparameters optimization. Compared with traditional grey wolf optimizer, which is easy to fall into local optimality, DEGWO updates the population through mutation, crossover and screening operations to obtain the global optimal solution and improve the global search ability. The proposed method is verified based on the dataset of the battery from NASA and MIT. The simulations indicate that the proposed method has higher accuracy for different kinds of batteries. The estimation errors for both datasets are within 1%. Compared with other methods, the estimation evaluation indicators such as RMSE, MAE and MAPE of the proposed method are within 1%, which is much less than the estimation results obtained by other methods. And determination coefficient R2 is above 0.95, which means the proposed method has batter fitting performance. It is also indicated that the method proposed in this paper has higher accuracy, better robustness and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
乐乐应助科研通管家采纳,获得10
32秒前
量子星尘发布了新的文献求助10
47秒前
1分钟前
平常以云完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
傅嘉庆发布了新的文献求助10
2分钟前
小白发布了新的文献求助10
2分钟前
2分钟前
不安青牛应助zhangxiaoqing采纳,获得10
2分钟前
小马甲应助傅嘉庆采纳,获得10
2分钟前
啦啦啦发布了新的文献求助10
2分钟前
3分钟前
xxi发布了新的文献求助10
3分钟前
大模型应助Chloe采纳,获得10
3分钟前
小白完成签到 ,获得积分10
3分钟前
爆米花应助啦啦啦采纳,获得10
3分钟前
Jasper应助哈皮波采纳,获得10
3分钟前
4分钟前
哈皮波发布了新的文献求助10
4分钟前
科目三应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
Chloe发布了新的文献求助10
4分钟前
开放道天发布了新的文献求助30
4分钟前
4分钟前
4分钟前
鱼鱼片片发布了新的文献求助10
4分钟前
啦啦啦发布了新的文献求助10
4分钟前
852应助开放道天采纳,获得10
5分钟前
啦啦啦完成签到,获得积分10
5分钟前
bbbbb发布了新的文献求助30
5分钟前
bbbbb完成签到,获得积分10
5分钟前
wwe完成签到,获得积分10
6分钟前
不能吃太饱完成签到 ,获得积分10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
深情安青应助科研通管家采纳,获得10
6分钟前
不安青牛应助zhangxiaoqing采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681763
求助须知:如何正确求助?哪些是违规求助? 5012693
关于积分的说明 15176093
捐赠科研通 4841267
什么是DOI,文献DOI怎么找? 2595068
邀请新用户注册赠送积分活动 1548093
关于科研通互助平台的介绍 1506093