Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine

极限学习机 卡尔曼滤波器 均方误差 粒子群优化 启发式 计算机科学 超级电容器 储能 扩展卡尔曼滤波器 人工智能 机器学习
作者
Dezhi Li,Shuo Li,Shubo Zhang,Jianrui Sun,Licheng Wang,Kai Wang
出处
期刊:Energy [Elsevier]
卷期号:: 123773-123773
标识
DOI:10.1016/j.energy.2022.123773
摘要

With the advancement of wind energy, solar energy, and other new energy industries, the demand for energy storage systems are worth increasing. Supercapacitors gradually stand out among many energy storage components due to their advantages of high power density, fast charging and discharging speed, and long life. Predicting the capacity of supercapacitors from historical data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimized forecasting model-an extreme learning machine (ELM) model coupled with the heuristic Kalman filter (HKF) algorithm to forecast the capacity of supercapacitors. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient capacity forecasting in real-time. Our HKF-ELM model performed significantly better than other data-driven models models that are commonly used in forecasting life of supercapacitors. The performance of the proposed HKF-ELM model was also compared with traditional ELM, Kalman filtering model, ELM optimized by the particle swarm optimization (PSO-ELM) and Kalman filter extreme learning machine models (KA-ELM). Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Square Error (MSE) and R 2 determination coefficient were used for the comparison of the selected models. The aging life of supercapacitors in different environments were also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional data-driven models in terms of prediction aging life of supercapacitors and it can be applied in real-time to predict state of health (SOH) based on the previous charge and discharge data of supercapacitors. In particular, considering RMSE of forecasting, the proposed HKF-ELM model performed 77.62% better than the traditional ELM model, 77.46% better than the PSO-ELM model, 87.40% better than the traditional Kalman filter model, 82.51% better than the KA-ELM model in forecasting aging life of supercapacitors. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HKF. Fewer setting parameters, lower time cost and higher prediction accuracy have been need in our methodology compared to available models. Our work presents an original way of performing aging life of supercapacitors forecasting in real-time in industry with highly accurate results which are much better than pre-existing life forecasting models. • HKF-ELM model is proposed to predict the remaining useful life of supercapacitors. • Heuristic Kalman filtering algorithm can solve the square matrix singularity. • The RMSE of the supercapacitor aging state estimation is as low as e −5 . • HKF-ELM model can ensure high prediction accuracy and realize fast operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助执着的小蘑菇采纳,获得10
刚刚
西哈哈发布了新的文献求助10
刚刚
搜集达人应助酷炫大树采纳,获得10
1秒前
1秒前
1秒前
外向的沅完成签到,获得积分20
1秒前
bkagyin应助zy采纳,获得10
2秒前
香蕉觅云应助好了采纳,获得10
2秒前
南逸然发布了新的文献求助10
3秒前
3秒前
xiaohe完成签到,获得积分10
3秒前
3秒前
隐形曼青应助camera采纳,获得10
3秒前
狗狗完成签到 ,获得积分10
4秒前
SciGPT应助Melody采纳,获得10
4秒前
听粥发布了新的文献求助10
4秒前
小张在进步完成签到,获得积分10
5秒前
科研通AI5应助WNL采纳,获得10
5秒前
阿蒙发布了新的文献求助10
5秒前
自觉石头完成签到 ,获得积分10
6秒前
田様应助岁月轮回采纳,获得10
6秒前
hao完成签到,获得积分10
6秒前
bjbbh发布了新的文献求助10
6秒前
皓月千里完成签到,获得积分10
6秒前
夏小安完成签到,获得积分10
6秒前
7秒前
ymh完成签到,获得积分10
7秒前
starry发布了新的文献求助10
7秒前
hualidy完成签到,获得积分10
7秒前
qifa完成签到,获得积分10
7秒前
7秒前
春夏秋冬发布了新的文献求助10
7秒前
习习发布了新的文献求助10
8秒前
8秒前
往事无痕完成签到 ,获得积分10
9秒前
9秒前
9秒前
逸龙完成签到,获得积分10
9秒前
buno应助单纯的雅香采纳,获得10
10秒前
xinchengzhu发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678