Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine

极限学习机 卡尔曼滤波器 均方误差 粒子群优化 启发式 计算机科学 超级电容器 储能 扩展卡尔曼滤波器 人工智能 机器学习
作者
Dezhi Li,Shuo Li,Shubo Zhang,Jianrui Sun,Licheng Wang,Kai Wang
出处
期刊:Energy [Elsevier BV]
卷期号:: 123773-123773
标识
DOI:10.1016/j.energy.2022.123773
摘要

With the advancement of wind energy, solar energy, and other new energy industries, the demand for energy storage systems are worth increasing. Supercapacitors gradually stand out among many energy storage components due to their advantages of high power density, fast charging and discharging speed, and long life. Predicting the capacity of supercapacitors from historical data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimized forecasting model-an extreme learning machine (ELM) model coupled with the heuristic Kalman filter (HKF) algorithm to forecast the capacity of supercapacitors. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient capacity forecasting in real-time. Our HKF-ELM model performed significantly better than other data-driven models models that are commonly used in forecasting life of supercapacitors. The performance of the proposed HKF-ELM model was also compared with traditional ELM, Kalman filtering model, ELM optimized by the particle swarm optimization (PSO-ELM) and Kalman filter extreme learning machine models (KA-ELM). Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Square Error (MSE) and R 2 determination coefficient were used for the comparison of the selected models. The aging life of supercapacitors in different environments were also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional data-driven models in terms of prediction aging life of supercapacitors and it can be applied in real-time to predict state of health (SOH) based on the previous charge and discharge data of supercapacitors. In particular, considering RMSE of forecasting, the proposed HKF-ELM model performed 77.62% better than the traditional ELM model, 77.46% better than the PSO-ELM model, 87.40% better than the traditional Kalman filter model, 82.51% better than the KA-ELM model in forecasting aging life of supercapacitors. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HKF. Fewer setting parameters, lower time cost and higher prediction accuracy have been need in our methodology compared to available models. Our work presents an original way of performing aging life of supercapacitors forecasting in real-time in industry with highly accurate results which are much better than pre-existing life forecasting models. • HKF-ELM model is proposed to predict the remaining useful life of supercapacitors. • Heuristic Kalman filtering algorithm can solve the square matrix singularity. • The RMSE of the supercapacitor aging state estimation is as low as e −5 . • HKF-ELM model can ensure high prediction accuracy and realize fast operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
匿名发布了新的文献求助10
刚刚
幸福果汁发布了新的文献求助10
刚刚
兴奋蘑菇应助风清扬采纳,获得10
刚刚
1秒前
2秒前
innocence完成签到,获得积分10
2秒前
dbl发布了新的文献求助10
3秒前
3秒前
留白留白发布了新的文献求助10
5秒前
Raymond应助细心小鸭子采纳,获得10
5秒前
sleepingfish应助快乐小狗采纳,获得20
5秒前
5秒前
6秒前
李健的小迷弟应助AoAoo采纳,获得10
6秒前
陆离发布了新的文献求助10
6秒前
7秒前
pinging完成签到,获得积分10
7秒前
匿名完成签到,获得积分10
7秒前
dollarsbing完成签到,获得积分10
7秒前
hhhh_xt完成签到,获得积分10
8秒前
大巧若拙完成签到,获得积分10
9秒前
zhaozhao发布了新的文献求助30
9秒前
帅气鹭洋发布了新的文献求助30
9秒前
10秒前
小蚊子发布了新的文献求助10
10秒前
叮咚发布了新的文献求助10
11秒前
11秒前
12秒前
儒雅珊珊完成签到 ,获得积分10
13秒前
13秒前
14秒前
懵懂的采梦应助sssss采纳,获得10
15秒前
大模型应助鱼粥很好采纳,获得10
15秒前
17秒前
都找到了发布了新的文献求助10
18秒前
浮游应助yujia采纳,获得10
18秒前
18秒前
重要稀完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助20
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883807
求助须知:如何正确求助?哪些是违规求助? 4169216
关于积分的说明 12936623
捐赠科研通 3929578
什么是DOI,文献DOI怎么找? 2156156
邀请新用户注册赠送积分活动 1174580
关于科研通互助平台的介绍 1079365