Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine

极限学习机 卡尔曼滤波器 均方误差 粒子群优化 启发式 计算机科学 超级电容器 储能 扩展卡尔曼滤波器 人工智能 机器学习
作者
Dezhi Li,Shuo Li,Shubo Zhang,Jianrui Sun,Licheng Wang,Kai Wang
出处
期刊:Energy [Elsevier BV]
卷期号:: 123773-123773
标识
DOI:10.1016/j.energy.2022.123773
摘要

With the advancement of wind energy, solar energy, and other new energy industries, the demand for energy storage systems are worth increasing. Supercapacitors gradually stand out among many energy storage components due to their advantages of high power density, fast charging and discharging speed, and long life. Predicting the capacity of supercapacitors from historical data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimized forecasting model-an extreme learning machine (ELM) model coupled with the heuristic Kalman filter (HKF) algorithm to forecast the capacity of supercapacitors. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient capacity forecasting in real-time. Our HKF-ELM model performed significantly better than other data-driven models models that are commonly used in forecasting life of supercapacitors. The performance of the proposed HKF-ELM model was also compared with traditional ELM, Kalman filtering model, ELM optimized by the particle swarm optimization (PSO-ELM) and Kalman filter extreme learning machine models (KA-ELM). Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Square Error (MSE) and R 2 determination coefficient were used for the comparison of the selected models. The aging life of supercapacitors in different environments were also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional data-driven models in terms of prediction aging life of supercapacitors and it can be applied in real-time to predict state of health (SOH) based on the previous charge and discharge data of supercapacitors. In particular, considering RMSE of forecasting, the proposed HKF-ELM model performed 77.62% better than the traditional ELM model, 77.46% better than the PSO-ELM model, 87.40% better than the traditional Kalman filter model, 82.51% better than the KA-ELM model in forecasting aging life of supercapacitors. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HKF. Fewer setting parameters, lower time cost and higher prediction accuracy have been need in our methodology compared to available models. Our work presents an original way of performing aging life of supercapacitors forecasting in real-time in industry with highly accurate results which are much better than pre-existing life forecasting models. • HKF-ELM model is proposed to predict the remaining useful life of supercapacitors. • Heuristic Kalman filtering algorithm can solve the square matrix singularity. • The RMSE of the supercapacitor aging state estimation is as low as e −5 . • HKF-ELM model can ensure high prediction accuracy and realize fast operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang_qi完成签到,获得积分20
刚刚
1秒前
薄饼哥丶发布了新的文献求助10
3秒前
吃点红糖馒头完成签到,获得积分10
5秒前
研友_VZG7GZ应助蒋丞采纳,获得10
5秒前
sleep完成签到,获得积分10
6秒前
6秒前
yangyl完成签到,获得积分10
6秒前
闪闪的迎海完成签到,获得积分10
7秒前
当代鲁迅发布了新的文献求助10
7秒前
1111应助吃点红糖馒头采纳,获得20
8秒前
11秒前
11秒前
12秒前
xili发布了新的文献求助10
14秒前
qqqq发布了新的文献求助10
17秒前
xymm1204完成签到,获得积分10
18秒前
Lucas应助闪闪的迎海采纳,获得10
19秒前
星辰大海应助Zjx采纳,获得10
20秒前
dd完成签到,获得积分10
21秒前
22秒前
薄饼哥丶完成签到,获得积分10
23秒前
24秒前
科研通AI5应助杰瑞采纳,获得10
26秒前
酷酷小子发布了新的文献求助10
27秒前
27秒前
孙燕应助zsx采纳,获得10
30秒前
31秒前
xili完成签到,获得积分10
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
SHAO应助科研通管家采纳,获得10
32秒前
绝情继父应助科研通管家采纳,获得10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
32秒前
zs完成签到,获得积分10
32秒前
32秒前
32秒前
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652