亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine

极限学习机 卡尔曼滤波器 均方误差 粒子群优化 启发式 计算机科学 超级电容器 储能 扩展卡尔曼滤波器 人工智能 机器学习
作者
Dezhi Li,Shuo Li,Shubo Zhang,Jianrui Sun,Licheng Wang,Kai Wang
出处
期刊:Energy [Elsevier]
卷期号:: 123773-123773
标识
DOI:10.1016/j.energy.2022.123773
摘要

With the advancement of wind energy, solar energy, and other new energy industries, the demand for energy storage systems are worth increasing. Supercapacitors gradually stand out among many energy storage components due to their advantages of high power density, fast charging and discharging speed, and long life. Predicting the capacity of supercapacitors from historical data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimized forecasting model-an extreme learning machine (ELM) model coupled with the heuristic Kalman filter (HKF) algorithm to forecast the capacity of supercapacitors. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient capacity forecasting in real-time. Our HKF-ELM model performed significantly better than other data-driven models models that are commonly used in forecasting life of supercapacitors. The performance of the proposed HKF-ELM model was also compared with traditional ELM, Kalman filtering model, ELM optimized by the particle swarm optimization (PSO-ELM) and Kalman filter extreme learning machine models (KA-ELM). Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Square Error (MSE) and R 2 determination coefficient were used for the comparison of the selected models. The aging life of supercapacitors in different environments were also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional data-driven models in terms of prediction aging life of supercapacitors and it can be applied in real-time to predict state of health (SOH) based on the previous charge and discharge data of supercapacitors. In particular, considering RMSE of forecasting, the proposed HKF-ELM model performed 77.62% better than the traditional ELM model, 77.46% better than the PSO-ELM model, 87.40% better than the traditional Kalman filter model, 82.51% better than the KA-ELM model in forecasting aging life of supercapacitors. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HKF. Fewer setting parameters, lower time cost and higher prediction accuracy have been need in our methodology compared to available models. Our work presents an original way of performing aging life of supercapacitors forecasting in real-time in industry with highly accurate results which are much better than pre-existing life forecasting models. • HKF-ELM model is proposed to predict the remaining useful life of supercapacitors. • Heuristic Kalman filtering algorithm can solve the square matrix singularity. • The RMSE of the supercapacitor aging state estimation is as low as e −5 . • HKF-ELM model can ensure high prediction accuracy and realize fast operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
21秒前
我是站长才怪给是小赞啊的求助进行了留言
28秒前
42秒前
搜集达人应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
Fiona完成签到 ,获得积分10
1分钟前
优雅夕阳完成签到 ,获得积分10
1分钟前
1分钟前
宗沛槐完成签到,获得积分10
1分钟前
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
韩帅发布了新的文献求助10
3分钟前
Owen应助韩帅采纳,获得10
3分钟前
孟筱完成签到,获得积分10
3分钟前
HYQ完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
米老鼠de完成签到,获得积分10
4分钟前
调研昵称发布了新的文献求助20
4分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
Wei发布了新的文献求助10
5分钟前
puzhongjiMiQ发布了新的文献求助10
5分钟前
5分钟前
金刚经应助puzhongjiMiQ采纳,获得10
6分钟前
万能图书馆应助puzhongjiMiQ采纳,获得10
6分钟前
大模型应助puzhongjiMiQ采纳,获得10
6分钟前
qu蛐应助puzhongjiMiQ采纳,获得10
6分钟前
香蕉觅云应助puzhongjiMiQ采纳,获得10
6分钟前
6分钟前
自信号厂完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265472
求助须知:如何正确求助?哪些是违规求助? 2905543
关于积分的说明 8334005
捐赠科研通 2575810
什么是DOI,文献DOI怎么找? 1400135
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532