Aging state prediction for supercapacitors based on heuristic kalman filter optimization extreme learning machine

极限学习机 卡尔曼滤波器 均方误差 粒子群优化 启发式 计算机科学 超级电容器 储能 扩展卡尔曼滤波器 人工智能 机器学习
作者
Dezhi Li,Shuo Li,Shubo Zhang,Jianrui Sun,Licheng Wang,Kai Wang
出处
期刊:Energy [Elsevier]
卷期号:: 123773-123773
标识
DOI:10.1016/j.energy.2022.123773
摘要

With the advancement of wind energy, solar energy, and other new energy industries, the demand for energy storage systems are worth increasing. Supercapacitors gradually stand out among many energy storage components due to their advantages of high power density, fast charging and discharging speed, and long life. Predicting the capacity of supercapacitors from historical data is a highly non-linear problem, subject to various external and environmental factors. In this work, we propose an optimized forecasting model-an extreme learning machine (ELM) model coupled with the heuristic Kalman filter (HKF) algorithm to forecast the capacity of supercapacitors. ELM is preferred over traditional neural networks mainly due to its fast computational speed, which allows efficient capacity forecasting in real-time. Our HKF-ELM model performed significantly better than other data-driven models models that are commonly used in forecasting life of supercapacitors. The performance of the proposed HKF-ELM model was also compared with traditional ELM, Kalman filtering model, ELM optimized by the particle swarm optimization (PSO-ELM) and Kalman filter extreme learning machine models (KA-ELM). Different performance metrics, i.e., Root Mean Squared Error (RMSE), Mean Square Error (MSE) and R 2 determination coefficient were used for the comparison of the selected models. The aging life of supercapacitors in different environments were also performed using the proposed approach. The results revealed that the proposed approach is superior to traditional data-driven models in terms of prediction aging life of supercapacitors and it can be applied in real-time to predict state of health (SOH) based on the previous charge and discharge data of supercapacitors. In particular, considering RMSE of forecasting, the proposed HKF-ELM model performed 77.62% better than the traditional ELM model, 77.46% better than the PSO-ELM model, 87.40% better than the traditional Kalman filter model, 82.51% better than the KA-ELM model in forecasting aging life of supercapacitors. The novelty of the proposed approach lies in the way the fast computational speed of ELMs has been combined with the accuracy gained by tuning hyperparameters using HKF. Fewer setting parameters, lower time cost and higher prediction accuracy have been need in our methodology compared to available models. Our work presents an original way of performing aging life of supercapacitors forecasting in real-time in industry with highly accurate results which are much better than pre-existing life forecasting models. • HKF-ELM model is proposed to predict the remaining useful life of supercapacitors. • Heuristic Kalman filtering algorithm can solve the square matrix singularity. • The RMSE of the supercapacitor aging state estimation is as low as e −5 . • HKF-ELM model can ensure high prediction accuracy and realize fast operation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助TNU采纳,获得10
刚刚
海风吹过小镇完成签到 ,获得积分10
刚刚
十津川哈哈哈完成签到,获得积分10
刚刚
wanci应助神外魔法师采纳,获得30
1秒前
苍蓝所栖发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
感动又晴发布了新的文献求助10
3秒前
安详晓亦发布了新的文献求助10
3秒前
司徒绮发布了新的文献求助10
3秒前
3秒前
YK完成签到,获得积分10
4秒前
Gauss应助科研通管家采纳,获得20
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
Xinxxx应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Xinxxx应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
大快朵颐发福完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
只争朝夕应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高大的万恶完成签到,获得积分20
5秒前
浮游应助科研通管家采纳,获得10
5秒前
风趣凝海发布了新的文献求助10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
yao完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265