Energy‐based step selection analysis: Modelling the energetic drivers of animal movement and habitat use

海熊 觅食 选择(遗传算法) 资源(消歧) 栖息地 计算机科学 生态学 过程(计算) 工作流程 生物 机器学习 计算机网络 数据库 操作系统 北极的
作者
Natasha J. Klappstein,Jonathan R. Potts,Théo Michelot,Luca Börger,Nicholas W. Pilfold,Mark A. Lewis,Andrew E. Derocher
出处
期刊:Journal of Animal Ecology [Wiley]
卷期号:91 (5): 946-957 被引量:3
标识
DOI:10.1111/1365-2656.13687
摘要

The energetic gains from foraging and costs of movement are expected to be key drivers of animal decision-making, as their balance is a large determinant of body condition and survival. This fundamental perspective is often missing from habitat selection studies, which mainly describe correlations between space use and environmental features, rather than the mechanisms behind these correlations. To address this gap, we present a novel parameterisation of step selection functions (SSFs), that we term the energy selection function (ESF). In this model, the likelihood of an animal selecting a movement step depends directly on the corresponding energetic gains and costs, and we can therefore assess how moving animals choose habitat based on energetic considerations. The ESF retains the mathematical convenience and practicality of other SSFs and can be quickly fitted using standard software. In this article, we outline a workflow, from data gathering to statistical analysis, and use a case study of polar bears Ursus maritimus to demonstrate application of the model. We explain how defining gains and costs at the scale of the movement step allows us to include information about resource distribution, landscape resistance and movement patterns. We further demonstrate this process with a case study of polar bears and show how the parameters can be interpreted in terms of selection for energetic gains and against energetic costs. The ESF is a flexible framework that combines the energetic consequences of both movement and resource selection, thus incorporating a key mechanism into habitat selection analysis. Further, because it is based on familiar habitat selection models, the ESF is widely applicable to any study system where energetic gains and costs can be derived, and has immense potential for methodological extensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhouyu完成签到,获得积分10
1秒前
1秒前
图图发布了新的文献求助10
2秒前
雪糕发布了新的文献求助10
2秒前
情红锐完成签到,获得积分10
3秒前
Yang完成签到 ,获得积分10
3秒前
3秒前
5秒前
SJK发布了新的文献求助10
8秒前
郭元强完成签到,获得积分10
8秒前
10秒前
jiuji完成签到 ,获得积分20
10秒前
10秒前
李健的粉丝团团长应助YU采纳,获得10
11秒前
12秒前
13秒前
上官若男应助简单的鲜花采纳,获得10
13秒前
简单面包完成签到,获得积分10
14秒前
14秒前
我不是搞临床的吗关注了科研通微信公众号
14秒前
嘻嘻发布了新的文献求助10
15秒前
图图完成签到,获得积分20
15秒前
wsy发布了新的文献求助10
16秒前
浮游应助wangruiyang采纳,获得10
16秒前
16秒前
酷波er应助雪糕采纳,获得20
17秒前
科目三应助Pepsi采纳,获得10
18秒前
储物间完成签到,获得积分10
18秒前
Hello应助黑水仙采纳,获得10
18秒前
科研通AI2S应助微眠采纳,获得10
19秒前
Lili完成签到,获得积分10
19秒前
已知中的未知完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
烟花应助孤独天奇采纳,获得10
21秒前
奥德彪拉香蕉完成签到,获得积分10
23秒前
23秒前
酷波er应助瓜瓜采纳,获得20
24秒前
26秒前
雪莉完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906930
求助须知:如何正确求助?哪些是违规求助? 4184232
关于积分的说明 12993216
捐赠科研通 3950519
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185122
关于科研通互助平台的介绍 1091450