Energy‐based step selection analysis: Modelling the energetic drivers of animal movement and habitat use

海熊 觅食 选择(遗传算法) 资源(消歧) 栖息地 计算机科学 生态学 过程(计算) 工作流程 生物 机器学习 计算机网络 北极的 数据库 操作系统
作者
Natasha J. Klappstein,Jonathan R. Potts,Théo Michelot,Luca Börger,Nicholas W. Pilfold,Mark A. Lewis,Andrew E. Derocher
出处
期刊:Journal of Animal Ecology [Wiley]
卷期号:91 (5): 946-957 被引量:3
标识
DOI:10.1111/1365-2656.13687
摘要

The energetic gains from foraging and costs of movement are expected to be key drivers of animal decision-making, as their balance is a large determinant of body condition and survival. This fundamental perspective is often missing from habitat selection studies, which mainly describe correlations between space use and environmental features, rather than the mechanisms behind these correlations. To address this gap, we present a novel parameterisation of step selection functions (SSFs), that we term the energy selection function (ESF). In this model, the likelihood of an animal selecting a movement step depends directly on the corresponding energetic gains and costs, and we can therefore assess how moving animals choose habitat based on energetic considerations. The ESF retains the mathematical convenience and practicality of other SSFs and can be quickly fitted using standard software. In this article, we outline a workflow, from data gathering to statistical analysis, and use a case study of polar bears Ursus maritimus to demonstrate application of the model. We explain how defining gains and costs at the scale of the movement step allows us to include information about resource distribution, landscape resistance and movement patterns. We further demonstrate this process with a case study of polar bears and show how the parameters can be interpreted in terms of selection for energetic gains and against energetic costs. The ESF is a flexible framework that combines the energetic consequences of both movement and resource selection, thus incorporating a key mechanism into habitat selection analysis. Further, because it is based on familiar habitat selection models, the ESF is widely applicable to any study system where energetic gains and costs can be derived, and has immense potential for methodological extensions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助乖乖采纳,获得10
刚刚
1秒前
Jasper应助华W采纳,获得10
1秒前
1秒前
zyj完成签到,获得积分10
4秒前
一支得卦完成签到,获得积分10
5秒前
HuiJN完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
dudu10000发布了新的文献求助10
7秒前
7秒前
缓慢嘉懿发布了新的文献求助10
8秒前
8秒前
自觉的向薇完成签到,获得积分10
8秒前
masterchen完成签到,获得积分10
10秒前
11秒前
一支得卦发布了新的文献求助10
11秒前
vilin发布了新的文献求助10
11秒前
yjn完成签到,获得积分10
12秒前
善学以致用应助安安采纳,获得10
13秒前
iris发布了新的文献求助30
13秒前
14秒前
15秒前
善学以致用应助111111zx111采纳,获得10
17秒前
xiaoqin发布了新的文献求助10
17秒前
缓慢嘉懿完成签到,获得积分10
20秒前
20秒前
木子木子粒完成签到 ,获得积分10
20秒前
123321完成签到 ,获得积分10
20秒前
Claudia发布了新的文献求助10
21秒前
情怀应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
22秒前
ali应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
Rondab应助科研通管家采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998986
求助须知:如何正确求助?哪些是违规求助? 3538486
关于积分的说明 11274314
捐赠科研通 3277378
什么是DOI,文献DOI怎么找? 1807541
邀请新用户注册赠送积分活动 883909
科研通“疑难数据库(出版商)”最低求助积分说明 810080