Strategies of pluripotent stem cell-based therapy for retinal degeneration: update and challenges

色素性视网膜炎 诱导多能干细胞 视网膜变性 黄斑变性 移植 视网膜色素上皮 干细胞 干细胞疗法 视网膜 变性(医学) 视网膜 医学 神经科学 细胞疗法 胚胎干细胞 眼科 生物 外科 细胞生物学 生物化学 基因
作者
Tadao Maeda,Michiko Mandai,Sunao Sugita,Cody Kime,Masayo Takahashi
出处
期刊:Trends in Molecular Medicine [Elsevier]
卷期号:28 (5): 388-404 被引量:37
标识
DOI:10.1016/j.molmed.2022.03.001
摘要

Regenerative medicine for retinal degeneration in the outer layer of the retina has entered the practical stage given recent progress in that field utilizing advantageous aspects of the retina as a target of regenerative medicine. Next-generation therapies for expanding indications are progressing since the safety and efficacy of embryonic stem cell (ESC)/induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) transplantation have been confirmed to a certain extent in clinical studies globally for age-related macular degenerations. The development of next-generation therapies using retinal sheet derived from iPSCs for expanding indications is progressing. However, several issues in the popularization of retinal regenerative medicine due to the complex characteristics of the retina and cell products remain. Therefore, the application of an alternative strategy of regenerative medicine, such as induction of autologous retinal cells from somatic cells via a direct reprogramming system, may also be useful in the future. Stem cell-based therapy for retinal degeneration is transitioning from the research stage to the clinical stage and is being developed as a treatment across the globe. In clinical studies on induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) transplantation, the safety of the technique has started to clarify, and clinical study on further advances such as the long-desired transplantation of iPSC-derived retina to treat retinitis pigmentosa (RP) has begun. Ophthalmologists are now working closely with basic researchers to incorporate new technology areas with a synergy that is anticipated to realize the practical application of stem cell-based therapy for retinal degeneration. Stem cell-based therapy for retinal degeneration is transitioning from the research stage to the clinical stage and is being developed as a treatment across the globe. In clinical studies on induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) transplantation, the safety of the technique has started to clarify, and clinical study on further advances such as the long-desired transplantation of iPSC-derived retina to treat retinitis pigmentosa (RP) has begun. Ophthalmologists are now working closely with basic researchers to incorporate new technology areas with a synergy that is anticipated to realize the practical application of stem cell-based therapy for retinal degeneration. AMD is one of the leading causes of severe central vision loss in the elderly population worldwide. AMD is induced via sequential damage of retinal pigment epithelium (RPE), Bruch's membrane (BM), choroidal membrane, and photoreceptors due to pathological changes with age. The global prevalence of AMD is 8.7% and is estimated to affect ~288 million individuals globally by 2040. The advanced stages of AMD are categorized into two forms: nonneovascular (dry, nonexudative, or geographic) and neovascular (wet or exudative). Dry AMD is characterized by geographic atrophy of the outer retina, including the RPE, photoreceptors, and choriocapillaris, resulting in gradual retinal cell loss and decreased visual acuity. In wet AMD, choroidal neovascularization (CNV) causes exudative changes involving subretinal leakage of blood, lipids, fluids, and the formation of fibrous scars. a collagenous tissue found between RPE and choroidal membrane. BM functions as a basal membrane for RPE. BM thickens with age, slowing the transport of metabolites, leading to the formation of drusen, a metabolite deposit that causes pathological changes in AMD. a technology that uses the interference of light to take high-resolution, high-speed images of the internal structure of the retina. It can be used for noncontact, noninvasive imaging by irradiating near-infrared light and obtaining a high-resolution image of the retina. a neuroepithelial cell in the retina that initiates phototransduction by converting the light signal into the electoral response. Photoreceptor cells have an outer segment that functions as a light receptor and an inner segment that involves organelles to maintain the function of the cell. Photoreceptor cells are categorized into two types, cones and rods. Cones are localized in the macula and serve color vision under bright circumstances. By contrast, rods are found in the macular region and are used for monochromatic vision under dark circumstances. The human retina contains ~six million cones and ~100 million rods. RPE is the pigmented cell layer below the neural retina. RPE is attached to the BM and forms a retina–blood barrier between the retina and choroidal membrane. RPE comprises a single layer of hexagonal cells and serves several functions, such as light absorption, epithelial transport, spatial ion buffering, visual cycle, phagocytosis, secretion, and immune modulation. RP is a group of hereditary diseases that is prevalent in 3000–4000 individuals worldwide. RP is a Mendelian disease that can be autosomal dominant, autosomal recessive, or X-linked. Patients with RP initially develop night blindness and visual field impairment around age 20–30 years due to the loss of rods, followed by a decrease of visual acuity and loss of color vision around age 40–60 years due to the degeneration of cones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Taozhi发布了新的文献求助30
1秒前
Wcy发布了新的文献求助10
1秒前
科研通AI6应助景琦采纳,获得10
2秒前
XX完成签到,获得积分20
2秒前
热心树叶应助shiyingying采纳,获得30
2秒前
3秒前
Gabriel完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
丘比特应助单薄的尔烟采纳,获得10
3秒前
3秒前
hl发布了新的文献求助10
4秒前
yuki发布了新的文献求助10
4秒前
博ge发布了新的文献求助10
5秒前
5秒前
7秒前
sun完成签到,获得积分20
7秒前
南山鹤完成签到,获得积分10
8秒前
8秒前
9秒前
zhh完成签到,获得积分10
9秒前
华仔应助沉默的钵钵鸡采纳,获得10
9秒前
南山鹤发布了新的文献求助10
10秒前
成就凡双应助Yara.H采纳,获得10
11秒前
虞智闳发布了新的文献求助10
12秒前
Homura完成签到,获得积分10
12秒前
12秒前
12秒前
JinChow完成签到,获得积分20
13秒前
zzg完成签到,获得积分10
13秒前
14秒前
gqfqg发布了新的文献求助10
15秒前
16秒前
AIT发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
脑洞疼应助小居居采纳,获得10
18秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718