Strategies of pluripotent stem cell-based therapy for retinal degeneration: update and challenges

色素性视网膜炎 诱导多能干细胞 视网膜变性 黄斑变性 移植 视网膜色素上皮 干细胞 干细胞疗法 视网膜 变性(医学) 视网膜 医学 神经科学 细胞疗法 胚胎干细胞 眼科 生物 外科 细胞生物学 生物化学 基因
作者
Tadao Maeda,Michiko Mandai,Sunao Sugita,Cody Kime,Masayo Takahashi
出处
期刊:Trends in Molecular Medicine [Elsevier]
卷期号:28 (5): 388-404 被引量:28
标识
DOI:10.1016/j.molmed.2022.03.001
摘要

Regenerative medicine for retinal degeneration in the outer layer of the retina has entered the practical stage given recent progress in that field utilizing advantageous aspects of the retina as a target of regenerative medicine. Next-generation therapies for expanding indications are progressing since the safety and efficacy of embryonic stem cell (ESC)/induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) transplantation have been confirmed to a certain extent in clinical studies globally for age-related macular degenerations. The development of next-generation therapies using retinal sheet derived from iPSCs for expanding indications is progressing. However, several issues in the popularization of retinal regenerative medicine due to the complex characteristics of the retina and cell products remain. Therefore, the application of an alternative strategy of regenerative medicine, such as induction of autologous retinal cells from somatic cells via a direct reprogramming system, may also be useful in the future. Stem cell-based therapy for retinal degeneration is transitioning from the research stage to the clinical stage and is being developed as a treatment across the globe. In clinical studies on induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) transplantation, the safety of the technique has started to clarify, and clinical study on further advances such as the long-desired transplantation of iPSC-derived retina to treat retinitis pigmentosa (RP) has begun. Ophthalmologists are now working closely with basic researchers to incorporate new technology areas with a synergy that is anticipated to realize the practical application of stem cell-based therapy for retinal degeneration. Stem cell-based therapy for retinal degeneration is transitioning from the research stage to the clinical stage and is being developed as a treatment across the globe. In clinical studies on induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) transplantation, the safety of the technique has started to clarify, and clinical study on further advances such as the long-desired transplantation of iPSC-derived retina to treat retinitis pigmentosa (RP) has begun. Ophthalmologists are now working closely with basic researchers to incorporate new technology areas with a synergy that is anticipated to realize the practical application of stem cell-based therapy for retinal degeneration. AMD is one of the leading causes of severe central vision loss in the elderly population worldwide. AMD is induced via sequential damage of retinal pigment epithelium (RPE), Bruch's membrane (BM), choroidal membrane, and photoreceptors due to pathological changes with age. The global prevalence of AMD is 8.7% and is estimated to affect ~288 million individuals globally by 2040. The advanced stages of AMD are categorized into two forms: nonneovascular (dry, nonexudative, or geographic) and neovascular (wet or exudative). Dry AMD is characterized by geographic atrophy of the outer retina, including the RPE, photoreceptors, and choriocapillaris, resulting in gradual retinal cell loss and decreased visual acuity. In wet AMD, choroidal neovascularization (CNV) causes exudative changes involving subretinal leakage of blood, lipids, fluids, and the formation of fibrous scars. a collagenous tissue found between RPE and choroidal membrane. BM functions as a basal membrane for RPE. BM thickens with age, slowing the transport of metabolites, leading to the formation of drusen, a metabolite deposit that causes pathological changes in AMD. a technology that uses the interference of light to take high-resolution, high-speed images of the internal structure of the retina. It can be used for noncontact, noninvasive imaging by irradiating near-infrared light and obtaining a high-resolution image of the retina. a neuroepithelial cell in the retina that initiates phototransduction by converting the light signal into the electoral response. Photoreceptor cells have an outer segment that functions as a light receptor and an inner segment that involves organelles to maintain the function of the cell. Photoreceptor cells are categorized into two types, cones and rods. Cones are localized in the macula and serve color vision under bright circumstances. By contrast, rods are found in the macular region and are used for monochromatic vision under dark circumstances. The human retina contains ~six million cones and ~100 million rods. RPE is the pigmented cell layer below the neural retina. RPE is attached to the BM and forms a retina–blood barrier between the retina and choroidal membrane. RPE comprises a single layer of hexagonal cells and serves several functions, such as light absorption, epithelial transport, spatial ion buffering, visual cycle, phagocytosis, secretion, and immune modulation. RP is a group of hereditary diseases that is prevalent in 3000–4000 individuals worldwide. RP is a Mendelian disease that can be autosomal dominant, autosomal recessive, or X-linked. Patients with RP initially develop night blindness and visual field impairment around age 20–30 years due to the loss of rods, followed by a decrease of visual acuity and loss of color vision around age 40–60 years due to the degeneration of cones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大模型应助依然风华采纳,获得10
2秒前
今后应助现实的访云采纳,获得10
2秒前
徐丹完成签到,获得积分10
2秒前
susu完成签到 ,获得积分10
3秒前
红丿丿发布了新的文献求助10
3秒前
高贵的往事完成签到,获得积分10
4秒前
shhoing应助纯真的安双采纳,获得10
4秒前
琳琳发布了新的文献求助10
5秒前
温医第一打野完成签到,获得积分10
6秒前
6秒前
萝卜猪完成签到,获得积分10
6秒前
1111发布了新的文献求助10
6秒前
Yuuuu完成签到 ,获得积分10
6秒前
宝贝完成签到,获得积分10
6秒前
JLUO完成签到,获得积分10
7秒前
流砂完成签到,获得积分10
7秒前
Jasmine Mai完成签到,获得积分10
8秒前
ttttttuu完成签到,获得积分10
8秒前
8秒前
9秒前
Aganlin完成签到 ,获得积分0
9秒前
含蓄翠风完成签到,获得积分10
9秒前
枣核儿完成签到,获得积分10
9秒前
GMan完成签到 ,获得积分10
9秒前
梁岑晚完成签到,获得积分20
10秒前
dxz完成签到,获得积分10
10秒前
认真的一刀完成签到,获得积分10
10秒前
joruruo完成签到,获得积分10
10秒前
螃蟹One完成签到 ,获得积分10
11秒前
小七仔发布了新的文献求助10
11秒前
zzyytt完成签到,获得积分10
12秒前
12秒前
cessy完成签到,获得积分10
12秒前
科研小白发布了新的文献求助10
12秒前
Loooong应助长情半邪采纳,获得10
12秒前
12秒前
lxlcx发布了新的文献求助10
13秒前
李健应助cuicy采纳,获得30
13秒前
JU完成签到,获得积分10
13秒前
高分求助中
Evolution 2024
Experimental investigation of the mechanics of explosive welding by means of a liquid analogue 1060
Die Elektra-Partitur von Richard Strauss : ein Lehrbuch für die Technik der dramatischen Komposition 1000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 600
大平正芳: 「戦後保守」とは何か 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3004936
求助须知:如何正确求助?哪些是违规求助? 2664311
关于积分的说明 7221426
捐赠科研通 2301004
什么是DOI,文献DOI怎么找? 1220272
科研通“疑难数据库(出版商)”最低求助积分说明 594615
版权声明 593226