Combining multi-dimensional molecular fingerprints to predict the hERG cardiotoxicity of compounds

赫尔格 心脏毒性 计算机科学 指纹(计算) 特征(语言学) 人工智能 机器学习 计算生物学 医学 内科学 生物 毒性 钾通道 语言学 哲学
作者
Weizhe Ding,Yang Nan,Juanshu Wu,Chenyang Han,Xiangxin Xin,Siyuan Li,Hongsheng Liu,Li Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:144: 105390-105390 被引量:5
标识
DOI:10.1016/j.compbiomed.2022.105390
摘要

Recently, drug toxicity has become a critical problem with heavy medical and economic burdens. Acquired long QT syndrome (acLQTS) is an acquired cardiac ion channel disease caused by drugs blocking the hERG channel. Therefore, it is necessary to avoid cardiotoxicity in drug design, and computer models have been widely used to fix this predicament. In this study, we collected a hERG inhibitor dataset containing 8671 compounds, and then, these compounds were featurized by traditional molecular fingerprints (including Baseline2D, ECFP4, PropertyFP, and 3DFP) and the newly proposed molecular dynamics fingerprint (MDFP). Subsequently, regression prediction models were established by using four machine learning algorithms based on these fingerprints and the combined multi-dimensional molecular fingerprints (MultiFP). After cross-validation and independent test dataset validation, the results show that the best model was built by the consensus of four algorithms with MultiFP, and this model bests recently published methods in terms of hERG cardiotoxicity prediction with a RMSE of 0.531 and a R2 of 0.653 on the test dataset. Feature importance analysis and correlation analysis identified some novel structural features and molecular dynamics features that are highly associated with the hERG inhibition of compounds. Our findings provide new insight into multi-dimensional molecular fingerprints and consensus models for hERG cardiotoxicity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助嗑瓜子传奇采纳,获得10
刚刚
爆米花应助单纯的凡旋采纳,获得10
1秒前
deng发布了新的文献求助10
1秒前
科研通AI2S应助平淡白秋采纳,获得10
1秒前
阿宅完成签到 ,获得积分10
5秒前
7秒前
8秒前
领导范儿应助silence采纳,获得20
8秒前
曲大楚发布了新的文献求助10
9秒前
10秒前
12秒前
胡萝卜完成签到 ,获得积分10
12秒前
Yasong完成签到 ,获得积分10
14秒前
七七发布了新的文献求助10
14秒前
ting发布了新的文献求助20
15秒前
SciGPT应助George Will采纳,获得10
15秒前
xjcy应助研友_ndDGVn采纳,获得20
17秒前
XC完成签到,获得积分10
17秒前
20秒前
21秒前
郜雨寒发布了新的文献求助10
22秒前
狂野飞柏完成签到 ,获得积分10
22秒前
稳重的书兰完成签到 ,获得积分10
23秒前
24秒前
九三发布了新的文献求助10
24秒前
25秒前
Gxt完成签到,获得积分10
26秒前
26秒前
悬夜发布了新的文献求助10
26秒前
丘比特应助整齐凌萱采纳,获得10
27秒前
惜墨应助pegasus0802采纳,获得10
27秒前
Hutch驳回了bkagyin应助
28秒前
silence发布了新的文献求助20
29秒前
29秒前
传奇3应助TALE采纳,获得10
30秒前
李健应助郜雨寒采纳,获得10
31秒前
山南完成签到,获得积分10
33秒前
36秒前
36秒前
开心易真完成签到,获得积分10
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139211
求助须知:如何正确求助?哪些是违规求助? 2790129
关于积分的说明 7794004
捐赠科研通 2446563
什么是DOI,文献DOI怎么找? 1301236
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109