Fusion-based effective noise removal approach with the reconstruction of guided reference image

人工智能 计算机科学 计算机视觉 噪音(视频) 平滑的 图像复原 降噪 图像(数学) 图像融合 滤波器(信号处理) 图像噪声 光学(聚焦) 噪声测量 图像处理 光学 物理
作者
Yao-zhen Liu,Wenchao Cai,Ning Liu,Weiya Zhang,Sijie Guo,Lu Qi,Wu Yangkang,Yanhao Chen,Zipeng Li
标识
DOI:10.1117/12.2624539
摘要

Image denoising approach has been studied for many decades. The main focus of image denosing is how to preserve image detail while remove image noise, however, it is hard to precisely distinguish the detail from noise. Up to now, even the state-of-the-art methods have the disadvantage of smoothing the detail with the noise at the same time. Inspired by the guided image filter(GIF) approach, we come up with a brand new approach to eliminate the image noise without losing the detail. A high quality guidance image is reconstructed by the specific fusion method of the near infrared image and the RGB image. With the reconstructed guidance image, the GIF approach can provide precise guidance filtering effect on the noisy RGB image. This approach performs good under strong noise level without smoothing the detail. Theoretical analysis and experimental results demonstrate that our method performs much better than the proposed methods. Examples have given illustrations of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级宇宙二踢脚完成签到,获得积分10
刚刚
刚刚
1秒前
大气小新完成签到,获得积分10
1秒前
ILS完成签到 ,获得积分10
1秒前
Orange应助澜生采纳,获得10
2秒前
lin完成签到,获得积分10
3秒前
Ares发布了新的文献求助10
3秒前
3秒前
谭平完成签到 ,获得积分10
3秒前
4秒前
淡定紫菱完成签到,获得积分10
4秒前
所所应助HYH采纳,获得20
4秒前
4秒前
木香完成签到,获得积分10
5秒前
尘雾发布了新的文献求助10
6秒前
7秒前
高鑫完成签到 ,获得积分10
7秒前
英姑应助dd采纳,获得10
7秒前
Chan0501关注了科研通微信公众号
8秒前
8秒前
研友_LMNjkn发布了新的文献求助10
8秒前
tjunqi完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助下课了吧采纳,获得10
10秒前
10秒前
10秒前
好的完成签到,获得积分20
11秒前
蜂蜜不是糖完成签到 ,获得积分10
11秒前
狮子最爱吃芒果完成签到,获得积分10
11秒前
12秒前
13秒前
尘雾完成签到,获得积分10
13秒前
澜生发布了新的文献求助10
14秒前
leekle完成签到,获得积分10
15秒前
shengChen发布了新的文献求助10
15秒前
自信鞯发布了新的文献求助10
16秒前
江北小赵完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794