An encoder-decoder deep learning method for multi-class object segmentation from 3D tunnel point clouds

点云 计算机科学 分割 人工智能 深度学习 编码器 计算机视觉 规范化(社会学) 对象(语法) 人类学 操作系统 社会学
作者
Ankang Ji,Alvin Wei Ze Chew,Xiaolong Xue,Limao Zhang
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:137: 104187-104187 被引量:36
标识
DOI:10.1016/j.autcon.2022.104187
摘要

Discovering seepage is widely thought to be critical for maintaining the healthy conditions of the tunnel. Unfortunately, most of the seepage surveys are still manual with tedious, time-consuming, and inefficient as well as work-related physical injuries. To address this problem, this research proposes an encoder-decoder deep learning method combined with point cloud techniques for multi-class object segmentation, including seepage, from 3D tunnel point clouds. This method develops data processing and feature extraction techniques to perform normalization of 3D point clouds with full consideration of point features, followed by constructing voxels as input to the proposed encoder-decoder architecture for learning. In the training process, an optimal model is selected with a learning rate of 0.0001, a batch size of 256, and a voxel boundary of 8. Subsequently, the optimal well-trained model is applied to the testing set, achieving excellent performance. Comparisons with other state-of-the-art methods and four data processing strategies are conducted, demonstrating that the proposed method outperforms in segmenting large-scale 3D point clouds. Overall, the proposed method performs excellently, beneficially contributing to the multi-class object segmentation from 3D tunnel point clouds with great practical potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lbb发布了新的文献求助10
1秒前
1秒前
丘比特应助光亮草莓采纳,获得10
2秒前
3秒前
科研通AI5应助晴天采纳,获得30
3秒前
4秒前
rose发布了新的文献求助10
4秒前
4秒前
4秒前
斯文的寒风应助蜜CC采纳,获得10
4秒前
4秒前
华仔应助奕初阳采纳,获得10
5秒前
lizhongxin完成签到,获得积分20
5秒前
大模型应助vv采纳,获得10
5秒前
6秒前
二哈发布了新的文献求助10
7秒前
酷酷的紫南完成签到 ,获得积分10
7秒前
7秒前
pofeng发布了新的文献求助10
7秒前
8秒前
赘婿应助wu采纳,获得10
8秒前
36456657应助evan_L采纳,获得10
9秒前
Jemezs发布了新的文献求助10
9秒前
阿宝发布了新的文献求助10
9秒前
秋日思语发布了新的文献求助10
9秒前
欣喜沛芹完成签到,获得积分10
9秒前
hill发布了新的文献求助10
10秒前
10秒前
10秒前
green完成签到,获得积分10
11秒前
科研通AI5应助激动的乐安采纳,获得10
11秒前
12秒前
一人之下完成签到,获得积分10
13秒前
13秒前
姜彦乔完成签到 ,获得积分10
13秒前
Jemezs完成签到,获得积分10
15秒前
green发布了新的文献求助10
15秒前
Nicolas完成签到,获得积分10
15秒前
SciGPT应助南城采纳,获得10
16秒前
高分求助中
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Where and how to use plate heat exchangers 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3703260
求助须知:如何正确求助?哪些是违规求助? 3252967
关于积分的说明 9882156
捐赠科研通 2965077
什么是DOI,文献DOI怎么找? 1626077
邀请新用户注册赠送积分活动 770442
科研通“疑难数据库(出版商)”最低求助积分说明 742922