Early Predictors of Clinical and MRI Outcomes Using Least Absolute Shrinkage and Selection Operator (LASSO) in Multiple Sclerosis

医学 磁共振成像 接收机工作特性 Lasso(编程语言) 内科学 多发性硬化 曲线下面积 放射科 计算机科学 精神科 万维网
作者
Gauruv Bose,Brian Healy,Hrishikesh Lokhande,Marinos G Sotiropoulos,Mariann Polgar‐Turcsanyi,Mark Anderson,Bonnie I. Glanz,Charles R.G. Guttman,Rohit Bakshi,Howard L. Weiner,Tanuja Chitnis
出处
期刊:Annals of Neurology [Wiley]
卷期号:92 (1): 87-96 被引量:11
标识
DOI:10.1002/ana.26370
摘要

The objective of this study was to identify predictors in common between different clinical and magnetic resonance imaging (MRI) outcomes in multiple sclerosis (MS) by comparing predictive models.We analyzed 704 patients from our center seen at MS onset, measuring 37 baseline demographic, clinical, treatment, and MRI predictors, and 10-year outcomes. Our primary aim was identifying predictors in common among clinical outcomes: aggressive MS, benign MS, and secondary-progressive (SP)MS. We also investigated MRI outcomes: T2 lesion volume (T2LV) and brain parenchymal fraction (BPF). The performance of the full 37-predictor model was compared with a least absolute shrinkage and selection operator (LASSO)-selected model of predictors in common between each outcome by the area under the receiver operating characteristic curves (AUCs).The full 37-predictor model was highly predictive of clinical outcomes: in-sample AUC was 0.91 for aggressive MS, 0.81 for benign MS, and 0.81 for SPMS. After variable selection, 10 LASSO-selected predictors were in common between each clinical outcome: age, Expanded Disability Status Scale, pyramidal, cerebellar, sensory and bowel/bladder signs, timed 25-foot walk ≥6 seconds, poor attack recovery, no sensory attacks, and time-to-treatment. This reduced model had comparable cross-validation AUC as the full 37-predictor model: 0.84 versus 0.81 for aggressive MS, 0.75 versus 0.73 for benign MS, and 0.76 versus 0.75 for SPMS, respectively. In contrast, 10-year MRI outcomes were more strongly influenced by initial T2LV and BPF than clinical outcomes.Early prognostication of MS is possible using LASSO modeling to identify a limited set of accessible clinical features. These predictive models can be clinically usable in treatment decision making once implemented into web-based calculators. ANN NEUROL 2022;92:87-96.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hqc8866完成签到 ,获得积分10
刚刚
汉堡包应助等待寄云采纳,获得10
刚刚
ZYSNNNN完成签到 ,获得积分10
1秒前
1秒前
1秒前
Ale关注了科研通微信公众号
2秒前
TranYan发布了新的文献求助20
3秒前
小马甲应助gj2221423采纳,获得10
3秒前
任性曼安发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
倒数第二完成签到,获得积分10
5秒前
lapidary发布了新的文献求助10
6秒前
十亿发布了新的文献求助10
6秒前
RayLam完成签到,获得积分10
7秒前
佳沫完成签到,获得积分10
8秒前
chrysan发布了新的文献求助10
8秒前
不敢心动完成签到,获得积分10
8秒前
莲的心事完成签到,获得积分10
8秒前
EVE发布了新的文献求助50
9秒前
9秒前
9秒前
白一丹完成签到,获得积分20
10秒前
简单灵凡发布了新的文献求助10
10秒前
虚幻靖易完成签到,获得积分10
10秒前
酷波er应助赵哥采纳,获得10
10秒前
Anorange发布了新的文献求助100
10秒前
11秒前
桐桐应助qwe采纳,获得30
11秒前
11秒前
kim发布了新的文献求助10
11秒前
12秒前
zhikaiyici应助hehe采纳,获得10
14秒前
Hello应助失眠的夜雪采纳,获得10
14秒前
RayLam发布了新的文献求助10
14秒前
佳里完成签到,获得积分10
15秒前
simple发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156528
求助须知:如何正确求助?哪些是违规求助? 2807966
关于积分的说明 7875565
捐赠科研通 2466256
什么是DOI,文献DOI怎么找? 1312779
科研通“疑难数据库(出版商)”最低求助积分说明 630273
版权声明 601919