Efficient time series anomaly detection by multiresolution self-supervised discriminative network

增采样 异常检测 判别式 计算机科学 人工智能 系列(地层学) 模式识别(心理学) 异常(物理) 多分辨率分析 时间序列 特征(语言学) 机器学习 图像(数学) 小波 古生物学 离散小波变换 语言学 哲学 物理 小波变换 生物 凝聚态物理
作者
Desen Huang,Lifeng Shen,Zhongzhong Yu,Zhenjing Zheng,Min Huang,Qianli Ma
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:491: 261-272 被引量:11
标识
DOI:10.1016/j.neucom.2022.03.048
摘要

Time series anomaly detection aims to identify abnormal subsequences in time series that are markedly different from the temporal behaviors of the entire sequence. Although previous density-based or proximity-based anomaly detection methods are usually used for anomaly detection, they are still suffering from high computational costs due to the need of traversing the whole training dataset during testing. Recently, reconstruction-based deep learning methods are popular for time series anomaly detection. However, they may not work well because their objective is to recover all information appeared in time series, including high-frequency noises. In this paper, we propose a simple yet efficient method called Multiresolution Self-Supervised Discriminative Network (MS2D-Net) for efficient time series anomaly detection. Specifically, the MS2D-Net includes a multiresolution downsampling module, a feature extraction module, and a self-supervised discrimination module. The multiresolution downsampling module generates some multiresolution samples by downsampling the original time series with different sampling rates and creates different pseudo-labels representing multi-scale behaviors in time series. Then, in the feature extraction module, a shallow convolution network is used to extract temporal dynamics in time series at multiple resolutions. Finally, the self-supervised discrimination module uses the pseudo-labels obtained from the multiresolution downsampling module as the self-supervised information to help separate anomalies from the normal time series samples. Experimental results show that the proposed MS2D-Net can outperform recent strong deep learning baselines on 18 benchmarks for time series anomaly detection with a much lower computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的西装完成签到,获得积分10
刚刚
callmecjh发布了新的文献求助10
1秒前
在水一方应助1234采纳,获得10
2秒前
充电宝应助小纯洁采纳,获得10
4秒前
4秒前
6秒前
乐正广山发布了新的文献求助10
7秒前
海的呼唤发布了新的文献求助10
7秒前
7秒前
8秒前
callmecjh完成签到,获得积分10
8秒前
L3213036054发布了新的文献求助10
9秒前
9秒前
lala完成签到,获得积分10
9秒前
思源应助Andrea采纳,获得10
10秒前
神勇的曼柔关注了科研通微信公众号
10秒前
fufu完成签到 ,获得积分10
11秒前
华国锋应助科研通管家采纳,获得20
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
谢许杯商应助科研通管家采纳,获得20
11秒前
Ava应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得30
12秒前
科研助手6应助科研通管家采纳,获得10
12秒前
whatever应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
12秒前
断数循环应助科研通管家采纳,获得10
12秒前
12秒前
所所应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
科目三应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014