已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Efficient time series anomaly detection by multiresolution self-supervised discriminative network

增采样 异常检测 判别式 计算机科学 人工智能 系列(地层学) 模式识别(心理学) 异常(物理) 多分辨率分析 时间序列 特征(语言学) 机器学习 图像(数学) 小波 古生物学 离散小波变换 语言学 哲学 物理 小波变换 生物 凝聚态物理
作者
Desen Huang,Lifeng Shen,Zhongzhong Yu,Zhenjing Zheng,Min Huang,Qianli Ma
出处
期刊:Neurocomputing [Elsevier]
卷期号:491: 261-272 被引量:11
标识
DOI:10.1016/j.neucom.2022.03.048
摘要

Time series anomaly detection aims to identify abnormal subsequences in time series that are markedly different from the temporal behaviors of the entire sequence. Although previous density-based or proximity-based anomaly detection methods are usually used for anomaly detection, they are still suffering from high computational costs due to the need of traversing the whole training dataset during testing. Recently, reconstruction-based deep learning methods are popular for time series anomaly detection. However, they may not work well because their objective is to recover all information appeared in time series, including high-frequency noises. In this paper, we propose a simple yet efficient method called Multiresolution Self-Supervised Discriminative Network (MS2D-Net) for efficient time series anomaly detection. Specifically, the MS2D-Net includes a multiresolution downsampling module, a feature extraction module, and a self-supervised discrimination module. The multiresolution downsampling module generates some multiresolution samples by downsampling the original time series with different sampling rates and creates different pseudo-labels representing multi-scale behaviors in time series. Then, in the feature extraction module, a shallow convolution network is used to extract temporal dynamics in time series at multiple resolutions. Finally, the self-supervised discrimination module uses the pseudo-labels obtained from the multiresolution downsampling module as the self-supervised information to help separate anomalies from the normal time series samples. Experimental results show that the proposed MS2D-Net can outperform recent strong deep learning baselines on 18 benchmarks for time series anomaly detection with a much lower computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张美环发布了新的文献求助10
2秒前
哲别发布了新的文献求助10
2秒前
3秒前
淳于汲完成签到 ,获得积分10
4秒前
EDTA完成签到,获得积分10
6秒前
CodeCraft应助陈文娜采纳,获得10
7秒前
Ylasime发布了新的文献求助10
7秒前
打打应助芋泥采纳,获得10
7秒前
8秒前
彼得应助哲别采纳,获得10
8秒前
CipherSage应助哲别采纳,获得10
8秒前
Albert应助兜兜采纳,获得10
10秒前
13秒前
搞怪岂愈完成签到,获得积分20
16秒前
17秒前
KNOW发布了新的文献求助10
17秒前
strawberry完成签到,获得积分10
18秒前
桐桐应助Chen采纳,获得10
19秒前
和谐的亦丝完成签到,获得积分10
20秒前
20秒前
搞怪岂愈发布了新的文献求助10
24秒前
26秒前
尔蝶完成签到 ,获得积分10
27秒前
28秒前
31秒前
32秒前
JJ完成签到,获得积分10
32秒前
yxf发布了新的文献求助10
33秒前
今后应助搞怪岂愈采纳,获得10
34秒前
NexusExplorer应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得20
35秒前
浮游应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
35秒前
浮游应助科研通管家采纳,获得10
35秒前
小菜鸟发布了新的文献求助30
35秒前
牛牛发布了新的文献求助10
36秒前
limingming完成签到,获得积分10
38秒前
852应助Ylasime采纳,获得10
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509187
求助须知:如何正确求助?哪些是违规求助? 4604199
关于积分的说明 14489342
捐赠科研通 4538896
什么是DOI,文献DOI怎么找? 2487220
邀请新用户注册赠送积分活动 1469636
关于科研通互助平台的介绍 1441867