亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning models outperform manual result review for the identification of wrong blood in tube errors in complete blood count results

机器学习 人工智能 决策树 计算机科学 人工神经网络 随机森林 支持向量机 逻辑回归 梯度升压 鉴定(生物学) 植物 生物
作者
Christopher‐John L. Farrell,John Giannoutsos
出处
期刊:International Journal of Laboratory Hematology [Wiley]
卷期号:44 (3): 497-503 被引量:6
标识
DOI:10.1111/ijlh.13820
摘要

Wrong blood in tube (WBIT) errors are a significant patient-safety issue encountered by clinical laboratories. This study assessed the performance of machine learning models for the identification of WBIT errors affecting complete blood count (CBC) results against the benchmark of manual review of results by laboratory staff.De-identified current and previous (within seven days) CBC results were used in the computer simulation of WBIT errors. 101 015 sets of samples were used to develop machine learning models using artificial neural network, extreme gradient boosting, support vector machine, random forest, logistic regression, decision trees (one complex and one simple) and k-nearest neighbours algorithms. The performance of these models, and of manual review by laboratory staff, was assessed on a separate data set of 1940 samples.Volunteers manually reviewing results identified WBIT errors with an accuracy of 85.7%, sensitivity of 80.1% and specificity of 92.1%. All machine learning models exceeded human-level performance (p-values for all metrics were <.001). The artificial neural network model was the most accurate (99.1%), and the simple decision tree was the least accurate (96.8%). Sensitivity for the machine learning models varied from 95.7% to 99.3%, and specificity varied from 96.3% to 98.9%.This study provides preliminary evidence supporting the value of machine learning for detecting WBIT errors affecting CBC results. Although further work addressing practical issues is required, substantial patient-safety benefits await the successful deployment of machine learning models for WBIT error detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
19秒前
43秒前
LJL发布了新的文献求助10
49秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
himat完成签到,获得积分10
2分钟前
喂我完成签到,获得积分10
2分钟前
2分钟前
JamesPei应助在明理摸鱼采纳,获得10
2分钟前
3分钟前
3分钟前
iii完成签到 ,获得积分10
3分钟前
3分钟前
希望天下0贩的0应助jw82采纳,获得10
3分钟前
4分钟前
藤椒辣鱼应助紫津采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
jw82发布了新的文献求助10
5分钟前
5分钟前
jw82完成签到,获得积分10
5分钟前
zhanggq123发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
紫津发布了新的文献求助10
5分钟前
5分钟前
ygl0217发布了新的文献求助10
5分钟前
藤椒辣鱼应助zhanggq123采纳,获得10
6分钟前
爱静静完成签到,获得积分0
6分钟前
深情安青应助LJL采纳,获得10
7分钟前
7分钟前
彭于晏应助科研通管家采纳,获得10
7分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434788
求助须知:如何正确求助?哪些是违规求助? 3032092
关于积分的说明 8944274
捐赠科研通 2720095
什么是DOI,文献DOI怎么找? 1492125
科研通“疑难数据库(出版商)”最低求助积分说明 689716
邀请新用户注册赠送积分活动 685847