Supervised Contrastive Learning With Structure Inference for Graph Classification

计算机科学 推论 判别式 图形 人工智能 理论计算机科学 模式识别(心理学) 机器学习
作者
Junzhong Ji,Jia Hao,Yating Ren,Minglong Lei
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 1684-1695 被引量:7
标识
DOI:10.1109/tnse.2022.3233479
摘要

Advanced graph neural networks have shown great potentials in graph classification tasks recently. Different from node classification where node embeddings aggregated from local neighbors can be directly used to learn node labels, graph classification requires a hierarchical accumulation of different levels of topological information to generate discriminative graph embeddings. Still, how to fully explore graph structures and formulate an effective graph classification pipeline remains rudimentary. In this paper, we propose a novel graph neural network based on supervised contrastive learning with structure inference for graph classification. First, we propose a data-driven graph augmentation strategy to enhance the existing connections. Concretely, we resort to a structure inference stage based on diffusion cascades to recover possible connections with high node similarities. Second, to improve the contrastive power of graph neural networks, we propose a supervised contrastive loss for graph classification. With the integration of label information, the one-vs-many contrastive learning is extended to a many-vs-many setting. The supervised contrastive loss and structure inference can be naturally incorporated within the hierarchical graph neural networks where the topological patterns can be fully explored to produce discriminative graph embeddings. Experiment results show the effectiveness of the proposed method compared with recent state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LLR完成签到 ,获得积分10
刚刚
笑点低的天问完成签到,获得积分10
1秒前
乐乐完成签到,获得积分10
1秒前
刚睡醒发布了新的文献求助10
1秒前
1秒前
2秒前
鲤黎黎发布了新的文献求助10
2秒前
Yan完成签到,获得积分10
2秒前
啦啦啦蛤蛤蛤完成签到 ,获得积分10
2秒前
Hello应助夕荀采纳,获得10
2秒前
xingmeng完成签到,获得积分10
2秒前
呼啦啦发布了新的文献求助10
3秒前
3秒前
Akim应助淡淡代珊采纳,获得10
3秒前
asdfg123完成签到,获得积分10
3秒前
刘亦菲完成签到,获得积分10
4秒前
4秒前
xiaomeng完成签到,获得积分10
4秒前
料峭声花完成签到,获得积分10
4秒前
苏silence发布了新的文献求助10
4秒前
王饱饱发布了新的文献求助10
5秒前
crytek完成签到,获得积分10
5秒前
沉柒完成签到,获得积分10
5秒前
tonyguo完成签到,获得积分10
5秒前
nn关闭了nn文献求助
5秒前
小蘑菇应助calico采纳,获得10
6秒前
程科杰完成签到,获得积分10
6秒前
金枪鱼历险记完成签到,获得积分10
6秒前
pluto应助洽洽瓜子shine采纳,获得10
6秒前
6秒前
kimi发布了新的文献求助10
7秒前
7秒前
orixero应助sesu采纳,获得10
7秒前
SciGPT应助研究啥采纳,获得10
7秒前
7秒前
向前完成签到,获得积分10
7秒前
刚睡醒完成签到,获得积分10
8秒前
8秒前
Funeral完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005