神经毒性
细胞毒性
化学
吖啶橙
免疫印迹
染色体易位
细胞生物学
溶酶体
细胞凋亡
卡尔帕因
细胞质
亚细胞定位
生物化学
分子生物学
生物
毒性
体外
有机化学
基因
酶
作者
Tianji Lin,Dingbang Huang,Xiao Chen,Xiaojing Meng,Fei Zou,Bin Wang
标识
DOI:10.1016/j.toxlet.2021.12.021
摘要
MeHg, an environmental toxicant, is highly toxic to the central nervous system. Recent studies have reported that LMP is an important way in the lysosomal damage. However, the role and molecular mechanism of LMP in MeHg-induced neurotoxicity remain unknown. To study MeHg-induced LMP, we used 10μM MeHg to treat SH-SY5Y cells and 2μM MeHg to treat rat cerebral cortical neurons. Acridine orange (AO) staining and analysis of cathepsin B (CTSB) release were used to determine LMP. We found that MeHg reduced red AO fluorescence and induced CTSB release from lysosomes to the cytoplasm in a time-dependent manner. Moreover, pretreatment with the CTSB inhibitor alleviated cytotoxicity in neuronal cells. These results indicate MeHg induces LMP and subsequent CTSB-dependent cytotoxicity in neuronal cells. Bax is a pore-forming protein, which is involved in mitochondrial outer membrane permeabilization. Intriguingly, we demonstrated that MeHg induced Bax to translocate to lysosomes by using immunofluorescence and Western blot analysis of subcellular fractions. Furthermore, downregulating Bax expression suppressed MeHg-induced LMP. Bax subcellular localization is regulated by protein interaction with the cytoplasmic 14-3-3. Our previous study demonstrated that JNK participated in neurotoxicity through regulating protein interaction. In the current study, we showed that JNK dissociated Bax-14-3-3 complex to facilitate Bax lysosomal translocation. Finally, inhibition of the JNK/Bax pathway could alleviate MeHg-induced cytotoxicity in neuronal cells. The present study implies that inhibiting lysosomal damage (LMP)-related signaling might alleviate MeHg neurotoxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI