亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of Behavioral Image Recognition of Pan-Entertainment of Contemporary College Students’ Network

计算机科学 人工智能 卷积神经网络 游戏娱乐 模式识别(心理学) 特征(语言学) 对偶(语法数字) 机器学习 语言学 文学类 哲学 艺术 视觉艺术
作者
Cui Hong,Yuan Wang
出处
期刊:Scientific Programming [Hindawi Limited]
卷期号:2022: 1-10
标识
DOI:10.1155/2022/1176279
摘要

With the continuous update and iteration of network technology and technological innovation, the handheld smart media of college students will become more and more sensitive. With the advancement of economic globalization, various ideologies and cultures in the world will rapidly invade, and the “pan-entertainment” of online media may intensify. Only through the government’s supervision function and the self-discipline of the internet industry, we can strictly control and screen positive values. In order to better establish the correct employment value orientation of university students and further analyze the importance of the “pan-entertainment” behavior image recognition of college students, this study analyzes the related technology and basic theory of behavior recognition. After introducing several mainstream methods, the traditional dual-stream convolutional network method is improved, and the time information and spatial information extracted by the two channels are discussed for the weighted fusion of feature maps. Finally, using R(2 + 1)D structure and dual-stream network structure design, a deep learning-based spatiotemporal convolution behavior recognition algorithm is proposed. The proposed algorithm is tested and analyzed on the datasets UCF101 and HMDB51. The specific work content is as follows: (1) to summarize the widely used video behavior classification methods proposed so far and discuss the future development. Then, it mainly analyzes the existing technical bottlenecks of some methods based on deep learning methods and summarizes and explores an efficient, stable, and accurate spatiotemporal feature joint extraction and learning method theory. (2) The design of spatiotemporal convolutional network algorithm framework is proposed, the method of segmentation processing of long video is studied, the improvement of the dual-stream network decision-level fusion method is studied, and the R(2 + 1)D network is reorganized. The network algorithm is trained and tested on the UCF-101 dataset and HMDB-51 dataset under the condition of calling the pretrained model. Finally, the accuracy is compared with the existing classic algorithms to obtain better accuracy, which proves the effectiveness of the algorithm for the “pan-entertainment” behavioral image recognition of contemporary college students.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
小呆呆发布了新的文献求助10
13秒前
34秒前
玱玱发布了新的文献求助10
41秒前
脑洞疼应助科研通管家采纳,获得10
52秒前
spark810应助科研通管家采纳,获得10
52秒前
yuehan完成签到 ,获得积分10
1分钟前
122完成签到 ,获得积分10
1分钟前
1分钟前
开放鸿涛完成签到,获得积分10
1分钟前
ifast完成签到 ,获得积分10
1分钟前
无花果应助司仪丶采纳,获得10
1分钟前
2分钟前
司仪丶发布了新的文献求助10
2分钟前
LYL完成签到,获得积分10
2分钟前
zz完成签到,获得积分10
3分钟前
Zzz_Carlos完成签到 ,获得积分10
3分钟前
ding应助msk采纳,获得10
3分钟前
友好寻琴完成签到 ,获得积分10
3分钟前
雪中发布了新的文献求助10
4分钟前
雪中完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
ywzwszl完成签到,获得积分10
5分钟前
子爵木完成签到 ,获得积分10
5分钟前
天天开心完成签到 ,获得积分10
5分钟前
胡图图完成签到 ,获得积分10
5分钟前
梧桐发布了新的文献求助10
5分钟前
lyon完成签到,获得积分10
6分钟前
酷波er应助SCINEXUS采纳,获得10
6分钟前
6分钟前
呼昂黄发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
李健应助科研通管家采纳,获得10
6分钟前
freeok发布了新的文献求助10
7分钟前
古力果完成签到,获得积分20
7分钟前
yuzhou完成签到 ,获得积分10
7分钟前
小冯完成签到 ,获得积分10
7分钟前
Orange应助科研兄采纳,获得10
8分钟前
lcs完成签到,获得积分10
8分钟前
8分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3271559
求助须知:如何正确求助?哪些是违规求助? 2910713
关于积分的说明 8355547
捐赠科研通 2581182
什么是DOI,文献DOI怎么找? 1404094
科研通“疑难数据库(出版商)”最低求助积分说明 656071
邀请新用户注册赠送积分活动 635530