Analysis of Behavioral Image Recognition of Pan-Entertainment of Contemporary College Students’ Network

计算机科学 人工智能 卷积神经网络 游戏娱乐 模式识别(心理学) 特征(语言学) 对偶(语法数字) 机器学习 艺术 语言学 哲学 文学类 视觉艺术
作者
Cui Hong,Yuan Wang
出处
期刊:Scientific Programming [Hindawi Limited]
卷期号:2022: 1-10
标识
DOI:10.1155/2022/1176279
摘要

With the continuous update and iteration of network technology and technological innovation, the handheld smart media of college students will become more and more sensitive. With the advancement of economic globalization, various ideologies and cultures in the world will rapidly invade, and the “pan-entertainment” of online media may intensify. Only through the government’s supervision function and the self-discipline of the internet industry, we can strictly control and screen positive values. In order to better establish the correct employment value orientation of university students and further analyze the importance of the “pan-entertainment” behavior image recognition of college students, this study analyzes the related technology and basic theory of behavior recognition. After introducing several mainstream methods, the traditional dual-stream convolutional network method is improved, and the time information and spatial information extracted by the two channels are discussed for the weighted fusion of feature maps. Finally, using R(2 + 1)D structure and dual-stream network structure design, a deep learning-based spatiotemporal convolution behavior recognition algorithm is proposed. The proposed algorithm is tested and analyzed on the datasets UCF101 and HMDB51. The specific work content is as follows: (1) to summarize the widely used video behavior classification methods proposed so far and discuss the future development. Then, it mainly analyzes the existing technical bottlenecks of some methods based on deep learning methods and summarizes and explores an efficient, stable, and accurate spatiotemporal feature joint extraction and learning method theory. (2) The design of spatiotemporal convolutional network algorithm framework is proposed, the method of segmentation processing of long video is studied, the improvement of the dual-stream network decision-level fusion method is studied, and the R(2 + 1)D network is reorganized. The network algorithm is trained and tested on the UCF-101 dataset and HMDB-51 dataset under the condition of calling the pretrained model. Finally, the accuracy is compared with the existing classic algorithms to obtain better accuracy, which proves the effectiveness of the algorithm for the “pan-entertainment” behavioral image recognition of contemporary college students.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
JamesPei应助发嗲的易形采纳,获得10
2秒前
纪外绣完成签到,获得积分10
2秒前
77完成签到,获得积分10
3秒前
Aug发布了新的文献求助10
3秒前
niuniu发布了新的文献求助10
4秒前
4秒前
沉默钢笔发布了新的文献求助30
5秒前
没烦恼发布了新的文献求助30
6秒前
虚幻德地发布了新的文献求助10
7秒前
7秒前
笑开口完成签到,获得积分10
7秒前
7秒前
zy发布了新的文献求助10
7秒前
8秒前
10秒前
十三发布了新的文献求助10
10秒前
ecoli完成签到,获得积分20
10秒前
吹泡泡的红豆完成签到 ,获得积分0
11秒前
11秒前
明理的天真完成签到 ,获得积分10
12秒前
141发布了新的文献求助10
13秒前
涓尘完成签到,获得积分20
13秒前
太清完成签到 ,获得积分10
14秒前
14秒前
丘比特应助小丁采纳,获得30
14秒前
风清扬发布了新的文献求助10
15秒前
16秒前
猫咪老师超nice完成签到,获得积分10
16秒前
17秒前
18秒前
18秒前
善学以致用应助海比天蓝采纳,获得10
18秒前
18秒前
X悦发布了新的文献求助10
18秒前
包容的灵槐完成签到,获得积分20
20秒前
科研通AI6应助三哥采纳,获得30
20秒前
qrr发布了新的文献求助10
21秒前
21秒前
河鲸发布了新的文献求助20
22秒前
YAN发布了新的文献求助10
23秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501789
求助须知:如何正确求助?哪些是违规求助? 4597876
关于积分的说明 14461669
捐赠科研通 4531433
什么是DOI,文献DOI怎么找? 2483369
邀请新用户注册赠送积分活动 1466861
关于科研通互助平台的介绍 1439478