亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of Behavioral Image Recognition of Pan-Entertainment of Contemporary College Students’ Network

计算机科学 人工智能 卷积神经网络 游戏娱乐 模式识别(心理学) 特征(语言学) 对偶(语法数字) 机器学习 语言学 文学类 哲学 艺术 视觉艺术
作者
Cui Hong,Yuan Wang
出处
期刊:Scientific Programming [Hindawi Publishing Corporation]
卷期号:2022: 1-10
标识
DOI:10.1155/2022/1176279
摘要

With the continuous update and iteration of network technology and technological innovation, the handheld smart media of college students will become more and more sensitive. With the advancement of economic globalization, various ideologies and cultures in the world will rapidly invade, and the “pan-entertainment” of online media may intensify. Only through the government’s supervision function and the self-discipline of the internet industry, we can strictly control and screen positive values. In order to better establish the correct employment value orientation of university students and further analyze the importance of the “pan-entertainment” behavior image recognition of college students, this study analyzes the related technology and basic theory of behavior recognition. After introducing several mainstream methods, the traditional dual-stream convolutional network method is improved, and the time information and spatial information extracted by the two channels are discussed for the weighted fusion of feature maps. Finally, using R(2 + 1)D structure and dual-stream network structure design, a deep learning-based spatiotemporal convolution behavior recognition algorithm is proposed. The proposed algorithm is tested and analyzed on the datasets UCF101 and HMDB51. The specific work content is as follows: (1) to summarize the widely used video behavior classification methods proposed so far and discuss the future development. Then, it mainly analyzes the existing technical bottlenecks of some methods based on deep learning methods and summarizes and explores an efficient, stable, and accurate spatiotemporal feature joint extraction and learning method theory. (2) The design of spatiotemporal convolutional network algorithm framework is proposed, the method of segmentation processing of long video is studied, the improvement of the dual-stream network decision-level fusion method is studied, and the R(2 + 1)D network is reorganized. The network algorithm is trained and tested on the UCF-101 dataset and HMDB-51 dataset under the condition of calling the pretrained model. Finally, the accuracy is compared with the existing classic algorithms to obtain better accuracy, which proves the effectiveness of the algorithm for the “pan-entertainment” behavioral image recognition of contemporary college students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
31秒前
40秒前
lrid完成签到 ,获得积分10
46秒前
不攻自破发布了新的文献求助10
46秒前
valere完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
NinG发布了新的文献求助10
1分钟前
时尚的雪一完成签到 ,获得积分10
2分钟前
斯文听寒完成签到 ,获得积分10
2分钟前
PAIDAXXXX完成签到,获得积分10
2分钟前
blenx完成签到,获得积分10
2分钟前
烟花应助kaka采纳,获得10
2分钟前
2分钟前
kaka发布了新的文献求助10
2分钟前
天天快乐应助乐乐洛洛采纳,获得10
2分钟前
苹果绿完成签到,获得积分10
2分钟前
2分钟前
酷酷的冰真应助苹果绿采纳,获得20
2分钟前
3分钟前
3分钟前
乐乐洛洛发布了新的文献求助10
3分钟前
大个应助小美最棒采纳,获得10
3分钟前
大模型应助不攻自破采纳,获得10
3分钟前
科研通AI2S应助热情千柳采纳,获得10
3分钟前
乐乐洛洛发布了新的文献求助10
3分钟前
3分钟前
4分钟前
不攻自破发布了新的文献求助10
4分钟前
小美最棒发布了新的文献求助10
4分钟前
小美最棒完成签到,获得积分10
4分钟前
4分钟前
打打应助科研通管家采纳,获得10
4分钟前
wanci应助jjdeng采纳,获得10
4分钟前
4分钟前
4分钟前
jjdeng发布了新的文献求助10
4分钟前
jjdeng完成签到,获得积分10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965706
求助须知:如何正确求助?哪些是违规求助? 3510935
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214