亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of Behavioral Image Recognition of Pan-Entertainment of Contemporary College Students’ Network

计算机科学 人工智能 卷积神经网络 游戏娱乐 模式识别(心理学) 特征(语言学) 对偶(语法数字) 机器学习 艺术 语言学 哲学 文学类 视觉艺术
作者
Cui Hong,Yuan Wang
出处
期刊:Scientific Programming [Hindawi Limited]
卷期号:2022: 1-10
标识
DOI:10.1155/2022/1176279
摘要

With the continuous update and iteration of network technology and technological innovation, the handheld smart media of college students will become more and more sensitive. With the advancement of economic globalization, various ideologies and cultures in the world will rapidly invade, and the “pan-entertainment” of online media may intensify. Only through the government’s supervision function and the self-discipline of the internet industry, we can strictly control and screen positive values. In order to better establish the correct employment value orientation of university students and further analyze the importance of the “pan-entertainment” behavior image recognition of college students, this study analyzes the related technology and basic theory of behavior recognition. After introducing several mainstream methods, the traditional dual-stream convolutional network method is improved, and the time information and spatial information extracted by the two channels are discussed for the weighted fusion of feature maps. Finally, using R(2 + 1)D structure and dual-stream network structure design, a deep learning-based spatiotemporal convolution behavior recognition algorithm is proposed. The proposed algorithm is tested and analyzed on the datasets UCF101 and HMDB51. The specific work content is as follows: (1) to summarize the widely used video behavior classification methods proposed so far and discuss the future development. Then, it mainly analyzes the existing technical bottlenecks of some methods based on deep learning methods and summarizes and explores an efficient, stable, and accurate spatiotemporal feature joint extraction and learning method theory. (2) The design of spatiotemporal convolutional network algorithm framework is proposed, the method of segmentation processing of long video is studied, the improvement of the dual-stream network decision-level fusion method is studied, and the R(2 + 1)D network is reorganized. The network algorithm is trained and tested on the UCF-101 dataset and HMDB-51 dataset under the condition of calling the pretrained model. Finally, the accuracy is compared with the existing classic algorithms to obtain better accuracy, which proves the effectiveness of the algorithm for the “pan-entertainment” behavioral image recognition of contemporary college students.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
10秒前
阿正嗖啪发布了新的文献求助10
16秒前
16秒前
21秒前
无闻发布了新的文献求助10
22秒前
cj完成签到 ,获得积分10
25秒前
风景园林发布了新的文献求助10
25秒前
25秒前
天天天晴完成签到 ,获得积分10
27秒前
阿正嗖啪发布了新的文献求助10
30秒前
35秒前
无闻完成签到,获得积分10
37秒前
852应助nobody12004采纳,获得30
43秒前
45秒前
46秒前
47秒前
清爽冬莲完成签到 ,获得积分0
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
Criminology34应助科研通管家采纳,获得10
48秒前
Ava应助科研通管家采纳,获得10
48秒前
ceeray23应助科研通管家采纳,获得10
48秒前
48秒前
世良发布了新的文献求助10
52秒前
SZ发布了新的文献求助100
52秒前
Mufreh应助cccc采纳,获得10
55秒前
小马甲应助世良采纳,获得10
1分钟前
1分钟前
1分钟前
Anlocia发布了新的文献求助10
1分钟前
pipashu应助cccc采纳,获得10
1分钟前
Owen应助务实的犀牛采纳,获得10
1分钟前
优美的小笨蛋应助gulmira采纳,获得10
1分钟前
SZ完成签到,获得积分10
1分钟前
cccc完成签到,获得积分10
1分钟前
赫连涵柏完成签到,获得积分0
1分钟前
Jiong发布了新的文献求助30
1分钟前
1分钟前
zhnn完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650722
求助须知:如何正确求助?哪些是违规求助? 4781542
关于积分的说明 15052547
捐赠科研通 4809550
什么是DOI,文献DOI怎么找? 2572377
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487367