Analysis of Behavioral Image Recognition of Pan-Entertainment of Contemporary College Students’ Network

计算机科学 人工智能 卷积神经网络 游戏娱乐 模式识别(心理学) 特征(语言学) 对偶(语法数字) 机器学习 艺术 语言学 哲学 文学类 视觉艺术
作者
Cui Hong,Yuan Wang
出处
期刊:Scientific Programming [Hindawi Limited]
卷期号:2022: 1-10
标识
DOI:10.1155/2022/1176279
摘要

With the continuous update and iteration of network technology and technological innovation, the handheld smart media of college students will become more and more sensitive. With the advancement of economic globalization, various ideologies and cultures in the world will rapidly invade, and the “pan-entertainment” of online media may intensify. Only through the government’s supervision function and the self-discipline of the internet industry, we can strictly control and screen positive values. In order to better establish the correct employment value orientation of university students and further analyze the importance of the “pan-entertainment” behavior image recognition of college students, this study analyzes the related technology and basic theory of behavior recognition. After introducing several mainstream methods, the traditional dual-stream convolutional network method is improved, and the time information and spatial information extracted by the two channels are discussed for the weighted fusion of feature maps. Finally, using R(2 + 1)D structure and dual-stream network structure design, a deep learning-based spatiotemporal convolution behavior recognition algorithm is proposed. The proposed algorithm is tested and analyzed on the datasets UCF101 and HMDB51. The specific work content is as follows: (1) to summarize the widely used video behavior classification methods proposed so far and discuss the future development. Then, it mainly analyzes the existing technical bottlenecks of some methods based on deep learning methods and summarizes and explores an efficient, stable, and accurate spatiotemporal feature joint extraction and learning method theory. (2) The design of spatiotemporal convolutional network algorithm framework is proposed, the method of segmentation processing of long video is studied, the improvement of the dual-stream network decision-level fusion method is studied, and the R(2 + 1)D network is reorganized. The network algorithm is trained and tested on the UCF-101 dataset and HMDB-51 dataset under the condition of calling the pretrained model. Finally, the accuracy is compared with the existing classic algorithms to obtain better accuracy, which proves the effectiveness of the algorithm for the “pan-entertainment” behavioral image recognition of contemporary college students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助起風了采纳,获得10
1秒前
正义狗狗侠完成签到 ,获得积分10
1秒前
我爱科研完成签到,获得积分10
2秒前
张帅奔完成签到,获得积分10
4秒前
桐桐应助若离采纳,获得10
4秒前
5秒前
乐乐发布了新的文献求助10
5秒前
5秒前
6秒前
Meng完成签到 ,获得积分10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
小蛙发布了新的文献求助10
9秒前
脑洞疼应助脱羰甲酸采纳,获得10
9秒前
9秒前
JamesPei应助明理楷瑞采纳,获得10
9秒前
Gumayusi发布了新的文献求助10
9秒前
11秒前
wildeager完成签到,获得积分10
11秒前
领导范儿应助千秋梧采纳,获得10
11秒前
冷艳的千亦应助李李李采纳,获得10
12秒前
hhhh发布了新的文献求助10
12秒前
12秒前
LL发布了新的文献求助10
13秒前
13秒前
LBH发布了新的文献求助10
13秒前
FashionBoy应助leo瀚采纳,获得10
14秒前
起風了发布了新的文献求助10
14秒前
科研通AI6应助独特的蛋挞采纳,获得10
15秒前
15秒前
没有答案发布了新的文献求助10
15秒前
若离发布了新的文献求助10
16秒前
科研通AI6应助学术版7e采纳,获得100
17秒前
pzh发布了新的文献求助10
17秒前
周同学完成签到,获得积分10
17秒前
18秒前
19秒前
邱文县发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594