Analysis of Behavioral Image Recognition of Pan-Entertainment of Contemporary College Students’ Network

计算机科学 人工智能 卷积神经网络 游戏娱乐 模式识别(心理学) 特征(语言学) 对偶(语法数字) 机器学习 艺术 语言学 哲学 文学类 视觉艺术
作者
Cui Hong,Yuan Wang
出处
期刊:Scientific Programming [Hindawi Publishing Corporation]
卷期号:2022: 1-10
标识
DOI:10.1155/2022/1176279
摘要

With the continuous update and iteration of network technology and technological innovation, the handheld smart media of college students will become more and more sensitive. With the advancement of economic globalization, various ideologies and cultures in the world will rapidly invade, and the “pan-entertainment” of online media may intensify. Only through the government’s supervision function and the self-discipline of the internet industry, we can strictly control and screen positive values. In order to better establish the correct employment value orientation of university students and further analyze the importance of the “pan-entertainment” behavior image recognition of college students, this study analyzes the related technology and basic theory of behavior recognition. After introducing several mainstream methods, the traditional dual-stream convolutional network method is improved, and the time information and spatial information extracted by the two channels are discussed for the weighted fusion of feature maps. Finally, using R(2 + 1)D structure and dual-stream network structure design, a deep learning-based spatiotemporal convolution behavior recognition algorithm is proposed. The proposed algorithm is tested and analyzed on the datasets UCF101 and HMDB51. The specific work content is as follows: (1) to summarize the widely used video behavior classification methods proposed so far and discuss the future development. Then, it mainly analyzes the existing technical bottlenecks of some methods based on deep learning methods and summarizes and explores an efficient, stable, and accurate spatiotemporal feature joint extraction and learning method theory. (2) The design of spatiotemporal convolutional network algorithm framework is proposed, the method of segmentation processing of long video is studied, the improvement of the dual-stream network decision-level fusion method is studied, and the R(2 + 1)D network is reorganized. The network algorithm is trained and tested on the UCF-101 dataset and HMDB-51 dataset under the condition of calling the pretrained model. Finally, the accuracy is compared with the existing classic algorithms to obtain better accuracy, which proves the effectiveness of the algorithm for the “pan-entertainment” behavioral image recognition of contemporary college students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AARON发布了新的文献求助10
刚刚
直率的惜寒完成签到,获得积分10
1秒前
王王王完成签到,获得积分10
1秒前
li发布了新的文献求助10
2秒前
李惊韬发布了新的文献求助10
3秒前
浮游应助wangyl采纳,获得10
3秒前
王武聪发布了新的文献求助10
4秒前
酷波er应助guopeng采纳,获得10
5秒前
为医消得人憔悴完成签到,获得积分10
6秒前
科研通AI5应助天天采纳,获得10
6秒前
负责小蜜蜂完成签到,获得积分10
7秒前
核桃应助wy.he采纳,获得10
7秒前
yuan完成签到,获得积分10
8秒前
善学以致用应助qww采纳,获得10
8秒前
科研通AI2S应助yanganqi采纳,获得10
9秒前
馆长应助文静的如波采纳,获得30
9秒前
present完成签到,获得积分10
11秒前
王舜富完成签到,获得积分20
11秒前
FashionBoy应助王武聪采纳,获得10
11秒前
华仔应助迷人的山灵采纳,获得10
11秒前
jackiewang发布了新的文献求助10
12秒前
SAODEN完成签到,获得积分10
12秒前
独孤阳光完成签到,获得积分10
17秒前
代能能发布了新的文献求助10
19秒前
19秒前
赘婿应助林夏采纳,获得10
20秒前
20秒前
20秒前
狄狄完成签到,获得积分10
21秒前
zxxx完成签到,获得积分10
21秒前
24秒前
xiemou完成签到,获得积分10
24秒前
25秒前
25秒前
余南箕完成签到,获得积分10
26秒前
26秒前
15966014069发布了新的文献求助10
26秒前
天天发布了新的文献求助10
26秒前
多久上课完成签到,获得积分10
27秒前
whoknowsname发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538095
求助须知:如何正确求助?哪些是违规求助? 3972801
关于积分的说明 12306882
捐赠科研通 3639551
什么是DOI,文献DOI怎么找? 2003944
邀请新用户注册赠送积分活动 1039353
科研通“疑难数据库(出版商)”最低求助积分说明 928718