Optimization of APT attack detection based on a model combining ATTENTION and deep learning

计算机科学 深度学习 人工智能 卷积神经网络 机器学习 入侵检测系统 恶意软件 过程(计算) 光学(聚焦) 数据挖掘 计算机安全 操作系统 光学 物理
作者
Cho Do Xuan,Duc M. Duong
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:42 (4): 4135-4151 被引量:6
标识
DOI:10.3233/jifs-212570
摘要

Nowadays, early detecting and warning Advanced Persistent Threat (APT) attacks is a major challenge for intrusion monitoring and prevention systems. Current studies and proposals for APT attack detection often focus on combining machine-learning techniques and APT malware behavior analysis techniques based on network traffic. To improve the efficiency of APT attack detection, this paper proposes a new approach based on a combination of deep learning networks and ATTENTION networks. The proposed process for APT attack detection in this study is as follows: Firstly, all data of network traffic is pre-processed, and analyzed by the CNN-LSTM deep learning network, which is a combination of Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). Then, instead of being used directly for classification, this data is analyzed and evaluated by the ATTENTION network. Finally, the output data of the ATTENTION network is classified to identify APT attacks. The optimization proposal for detecting APT attacks in this study is a novel proposal. It hasn’t been proposed and applied by any research. Some scenarios for comparing and evaluating the method proposed in this study with other approaches (implemented in section 4.4) show the superior effectiveness of our proposed approach. The results prove that the proposed method not only has scientific significance but also has practical significance because the model combining deep learning with ATTENTION network has helped improve the efficiency of analyzing and detecting APT malware based on network traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助1111采纳,获得10
1秒前
Akim应助lucy4472采纳,获得10
1秒前
1秒前
斯文败类应助ldl采纳,获得10
2秒前
天真映菡发布了新的文献求助10
4秒前
provin发布了新的文献求助10
6秒前
7秒前
小妮子发布了新的文献求助10
7秒前
8秒前
9秒前
卷卷完成签到,获得积分10
9秒前
10秒前
经钧完成签到 ,获得积分10
10秒前
pluto应助活力的秋烟采纳,获得10
10秒前
10秒前
刘璇2发布了新的文献求助10
11秒前
搜集达人应助碧蓝丹烟采纳,获得30
12秒前
13秒前
cocolu应助provin采纳,获得20
13秒前
研友_Z14Yln应助江城子采纳,获得10
13秒前
13秒前
科研小白发布了新的文献求助10
14秒前
lalala发布了新的文献求助10
14秒前
努力发布了新的文献求助10
14秒前
wsh发布了新的文献求助10
15秒前
16秒前
nuannuan应助啦啦啦采纳,获得10
16秒前
不安青牛应助lotus0311采纳,获得10
16秒前
springwyc完成签到,获得积分10
18秒前
无花果应助晴悦采纳,获得10
18秒前
ldl发布了新的文献求助10
19秒前
miles完成签到,获得积分10
19秒前
20秒前
TAN发布了新的文献求助10
20秒前
20秒前
孤岛飞鹰完成签到,获得积分10
20秒前
三花完成签到,获得积分10
21秒前
22秒前
善学以致用应助未雨绸缪采纳,获得10
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455119
求助须知:如何正确求助?哪些是违规求助? 3050396
关于积分的说明 9021195
捐赠科研通 2739055
什么是DOI,文献DOI怎么找? 1502407
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693269