Generation and Culture of Cardiac Microtissues in a Microfluidic Chip with a Reversible Open Top Enables Electrical Pacing, Dynamic Drug Dosing and Endothelial Cell Co-Culture

诱导多能干细胞 芯片上器官 微流控 生物医学工程 纳米技术 医学 材料科学 化学 胚胎干细胞 生物化学 基因
作者
Aisen Vivas,Camilo IJspeert,Jesper Yue Pan,Kim Vermeul,Albert van den Berg,Robert Passier,Stephan Sylvest Keller,Andries D. van der Meer
标识
DOI:10.1101/2021.11.01.465885
摘要

Abstract Cardiovascular disease morbidity has increased worldwide in recent years while drug development has been affected by failures in clinical trials and lack of physiologically relevant models. Organs-on-chips and human pluripotent stem cell technologies aid to overcome some of the limitations in cardiac in vitro models. Here, a bi-compartmental, monolithic heart-on-chip device that facilitates porous membrane integration in a single fabrication step is presented. Moreover, the device includes open-top compartments that allow facile co-culture of human pluripotent stem cell-derived cardiomyocytes and human adult cardiac fibroblast into geometrically defined cardiac microtissues. The device can be reversibly closed with a glass seal or a lid with fully customized 3D-printed pyrolytic carbon electrodes allowing electrical stimulation of cardiac microtissues. A subjacent microfluidic channel allowed localized and dynamic drug administration to the cardiac microtissues, as demonstrated by a chronotropic response to isoprenaline. Moreover, the microfluidic channel could also be populated with human induced pluripotent stem-derived endothelial cells allowing co-culture of heterotypic cardiac cells in one device. Overall, this study demonstrates a unique heart-on-chip model that systematically integrates the structure and electromechanical microenvironment of cardiac tissues in a device that enables active perfusion and dynamic drug dosing. Advances in the engineering of human heart-on-chip models represent an important step towards making organ-on-a-chip technology a routine aspect of preclinical cardiac drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助韩莎莎采纳,获得10
1秒前
3秒前
娃哈哈完成签到 ,获得积分10
5秒前
qjm发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助John_sdu采纳,获得80
7秒前
10秒前
咚咚发布了新的文献求助10
10秒前
12秒前
CHANYEOLYANG发布了新的文献求助30
12秒前
隐形曼青应助李昕123采纳,获得10
12秒前
12秒前
Jasper应助艺阳采纳,获得10
13秒前
松山少林学武功完成签到 ,获得积分10
14秒前
陈陈发布了新的文献求助10
16秒前
皮皮灰熊发布了新的文献求助10
18秒前
科研通AI2S应助小张采纳,获得10
20秒前
21秒前
NexusExplorer应助宓函采纳,获得10
21秒前
卡恩完成签到 ,获得积分10
21秒前
23秒前
23秒前
24秒前
努力学习才能找到工作完成签到 ,获得积分10
25秒前
peili应助可可托海采纳,获得10
26秒前
RyanL发布了新的文献求助10
27秒前
RyanNeo完成签到,获得积分10
29秒前
sandao发布了新的文献求助10
31秒前
ding应助yoyo采纳,获得30
31秒前
31秒前
桐桐应助结实的以莲采纳,获得10
31秒前
隐形曼青应助DaLu采纳,获得10
33秒前
33秒前
34秒前
34秒前
35秒前
35秒前
36秒前
39秒前
凉意发布了新的文献求助10
39秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388158
求助须知:如何正确求助?哪些是违规求助? 3000635
关于积分的说明 8792479
捐赠科研通 2686677
什么是DOI,文献DOI怎么找? 1471749
科研通“疑难数据库(出版商)”最低求助积分说明 680498
邀请新用户注册赠送积分活动 673224