Collaborative scheduling of operating room in hospital network: Multi-objective learning variable neighborhood search

计算机科学 调度(生产过程) 数学优化 整数规划 可变邻域搜索 模因算法 作业车间调度 运筹学 人工智能 局部搜索(优化) 算法 布线(电子设计自动化) 元启发式 数学 计算机网络
作者
M.M. Lotfi,J. Behnamian
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:116: 108233-108233 被引量:8
标识
DOI:10.1016/j.asoc.2021.108233
摘要

In this study, the operating room scheduling of hospital networks with virtual alliance has been studied, which at the same time, there is a kind of cooperation and competition among the agents. The main feature in networks with the virtual alliance is the possibility of different objective functions among the agents, which has priority for agents compared to the network’s overall objective. Here, by considering the conditions of emergency arrival, the time of inter-hospital transportation, and the elective patients and non-elective patients in the scheduling, an attempt has been made to bring the problem closer to real-world situations. To solve this problem, first, a mixed-integer mathematical programming model is proposed. Because of its NP-hardness, then, a multi-objective learning variable neighborhood search algorithm is designed to minimize total completion of surgeries, the cost of allocating the patient to the hospital and the surgeon, and the cost of overtime operating rooms throughout the network. Finally, the performance of the proposed algorithm is evaluated in comparison with the NSGA-II and memetic-based algorithm, which due to considering the learning mechanism along with the use of various neighborhood structures in the proposed algorithm, its results are promising. It is expected that by using the proposed algorithms in a cooperative structure, the hospitals are able to achieve optimal/near-optimal solutions in a reasonable time, in which, in addition to more economic activity, patients also benefit due to better use of resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺德福完成签到 ,获得积分10
刚刚
刚刚
科研通AI2S应助phantom采纳,获得10
2秒前
czh完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
3秒前
灯火完成签到,获得积分10
3秒前
ppp发布了新的文献求助10
4秒前
汉堡包应助密密麻麻蒙采纳,获得10
4秒前
yao发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
ZHT应助弗朗西斯卡采纳,获得10
6秒前
可爱山彤发布了新的文献求助10
7秒前
maox1aoxin应助lee采纳,获得50
8秒前
大模型应助研友_8Raw2Z采纳,获得10
8秒前
Lucas应助kellywang采纳,获得10
8秒前
8秒前
9秒前
可靠的冰烟完成签到,获得积分10
10秒前
shaobing8592给shaobing8592的求助进行了留言
10秒前
汉堡包应助lily采纳,获得10
10秒前
Ashui发布了新的文献求助10
10秒前
11秒前
moon发布了新的文献求助10
11秒前
lsy123456完成签到,获得积分10
12秒前
单纯板栗完成签到,获得积分10
13秒前
调皮的如凡完成签到,获得积分10
14秒前
dffad完成签到,获得积分10
14秒前
立里完成签到,获得积分10
15秒前
帅酷的小刺猬完成签到,获得积分10
15秒前
啧啧啧发布了新的文献求助10
15秒前
15秒前
上官若男应助醉熏的盼曼采纳,获得10
15秒前
cloudmeadow发布了新的文献求助10
16秒前
禾叶完成签到 ,获得积分10
17秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315866
求助须知:如何正确求助?哪些是违规求助? 2947564
关于积分的说明 8537636
捐赠科研通 2623689
什么是DOI,文献DOI怎么找? 1435384
科研通“疑难数据库(出版商)”最低求助积分说明 665558
邀请新用户注册赠送积分活动 651426