Collaborative scheduling of operating room in hospital network: Multi-objective learning variable neighborhood search

计算机科学 调度(生产过程) 数学优化 整数规划 可变邻域搜索 模因算法 作业车间调度 运筹学 人工智能 局部搜索(优化) 算法 布线(电子设计自动化) 元启发式 数学 计算机网络
作者
M.M. Lotfi,J. Behnamian
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:116: 108233-108233 被引量:8
标识
DOI:10.1016/j.asoc.2021.108233
摘要

In this study, the operating room scheduling of hospital networks with virtual alliance has been studied, which at the same time, there is a kind of cooperation and competition among the agents. The main feature in networks with the virtual alliance is the possibility of different objective functions among the agents, which has priority for agents compared to the network’s overall objective. Here, by considering the conditions of emergency arrival, the time of inter-hospital transportation, and the elective patients and non-elective patients in the scheduling, an attempt has been made to bring the problem closer to real-world situations. To solve this problem, first, a mixed-integer mathematical programming model is proposed. Because of its NP-hardness, then, a multi-objective learning variable neighborhood search algorithm is designed to minimize total completion of surgeries, the cost of allocating the patient to the hospital and the surgeon, and the cost of overtime operating rooms throughout the network. Finally, the performance of the proposed algorithm is evaluated in comparison with the NSGA-II and memetic-based algorithm, which due to considering the learning mechanism along with the use of various neighborhood structures in the proposed algorithm, its results are promising. It is expected that by using the proposed algorithms in a cooperative structure, the hospitals are able to achieve optimal/near-optimal solutions in a reasonable time, in which, in addition to more economic activity, patients also benefit due to better use of resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助chemlink采纳,获得10
1秒前
1秒前
鱻雩关注了科研通微信公众号
3秒前
细心的思远完成签到,获得积分20
4秒前
爆米花应助ap2010采纳,获得30
4秒前
6秒前
6秒前
李健的小迷弟应助isabellae采纳,获得10
6秒前
开花不铁树完成签到,获得积分20
7秒前
8秒前
852应助鸡蛋灌饼与掉渣饼采纳,获得10
8秒前
8秒前
9秒前
Criminology34应助二五九采纳,获得10
11秒前
晚星发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
星空发布了新的文献求助10
16秒前
文献发布了新的文献求助30
18秒前
19秒前
19秒前
20秒前
22秒前
23秒前
Rachel完成签到,获得积分10
24秒前
codwest完成签到,获得积分10
24秒前
25秒前
25秒前
越旻完成签到,获得积分10
26秒前
zxj完成签到,获得积分10
26秒前
26秒前
喜欢猫发布了新的文献求助10
26秒前
酷炫的爆米花完成签到,获得积分10
27秒前
李爱国应助西海沉采纳,获得10
27秒前
Orange应助方法采纳,获得10
27秒前
27秒前
沉静亿先完成签到,获得积分10
28秒前
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690