碳化
化学工程
比表面积
材料科学
多孔性
阳极
纳米孔
纳米技术
碳纤维
吸附
纳米孔
制作
化学
电极
催化作用
扫描电子显微镜
有机化学
复合材料
替代医学
物理化学
病理
工程类
复合数
医学
作者
Usman Ghani,Nousheen Iqbal,Ahmed A. Aboalhassan,Bowen Liu,Tabish Aftab,Imran Zada,Farman Ullah,Jiajun Gu,Yao Li,Shenmin Zhu,Qinglei Liu
标识
DOI:10.1016/j.jcis.2021.12.104
摘要
A facile one-step sonochemical activation method is utilized to fabricate biomass-derived 3D porous hard carbon (PHC-1) with tuned-surface and is compared with the conventional two-step activation method. As raw biomass offers good KOH impregnation, ultrasonication power diffuses both K+ and OH- ions deep into its interior, creating various nanopores and attaching copious functional groups. In contrast, conventional activation lacks these features under the same carbonization/activation parameters. The high porosity (1599 m2/g), rich functional groups (O = 8.10%, N = 0.95%), and well-connected nanoporous network resulting from sonochemical activation, remarkably increased specific capacity, surface wettability, and electrode stability, consequently improved electrochemical performance. Benefiting from its suitable microstructure, PHC-1 possesses superior specific capacity (330 mAh/g at 20 mA/g), good capacity retention (89.5%), and excellent structural stability over 500 sodiation/desodiation cycles at high current density (1000 mA/g). Apart from modus operandi comparison, the two activation methods also provide mechanistic insights as the low-voltage plateau region and graphitic layers decrease simultaneously. This work suggests a scalable and economical approach for synthesizing large-scale activated porous carbons that are used in various applications, be it energy storage, water purification, or gas storage, to name a few.
科研通智能强力驱动
Strongly Powered by AbleSci AI