计算机科学
降噪
人工智能
面子(社会学概念)
噪音(视频)
领域(数学)
面部表情
模式识别(心理学)
计算机视觉
图像(数学)
数学
社会科学
社会学
纯数学
作者
Lokendra Birla,Puneet Gupta
标识
DOI:10.1016/j.compbiomed.2021.105146
摘要
Heart rate (HR) estimation is an essential physiological parameter in the field of biomedical imaging. Remote Photoplethysmography (r-PPG) is a pathbreaking development in this field wherein the PPG signal is extracted from non-contact face videos. In the COVID-19 pandemic, rPPG plays a vital role for doctors and patients to perform telehealthcare. Existing rPPG methods provide incorrect HR estimation when face video contains facial deformations induced by facial expression. These methods process the entire face and utilize the same knowledge to mitigate different noises. It limits the performance of these methods because different facial expressions induce different noise characteristics depending on the facial region. Another limitation is that these methods neglect the facial expression for denoising even though it is the prominent noise source in temporal signals. These issues are mitigated in this paper by proposing a novel HR estimation method AND-rPPG, that is, A Novel Denoising-rPPG. We initiate the utilization of Action Units (AUs) for denoising temporal signals. Our denoising network models the temporal signals better than sequential architectures and mitigate the AUs-based (or face expression-based) noises effectively. The experiments performed on publicly available datasets reveal that our proposed method outperforms state-of-the-art HR estimation methods, and our denoising model can be easily integrated with existing methods to improve their HR estimation.
科研通智能强力驱动
Strongly Powered by AbleSci AI