Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

投影(关系代数) 迭代重建 块(置换群论) 人工智能 氡变换 计算机科学 计算机视觉 滤波器(信号处理) 帧(网络) 断层重建 人工神经网络 算法 数学 几何学 电信
作者
Genwei Ma,Xing Zhao,Yining Zhu,Huitao Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035010-035010 被引量:3
标识
DOI:10.1088/1361-6560/ac4122
摘要

Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助5476采纳,获得10
刚刚
螺蛳粉发布了新的文献求助10
刚刚
1秒前
酷波er应助lll采纳,获得10
2秒前
晚阳应助Kimberly采纳,获得30
2秒前
2秒前
www1发布了新的文献求助30
3秒前
NexusExplorer应助yeah采纳,获得10
3秒前
3秒前
null应助123采纳,获得10
3秒前
mayberichard发布了新的文献求助10
4秒前
4秒前
4秒前
tataliza1完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
星辰大海应助KON采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
项人发布了新的文献求助10
7秒前
7秒前
Anna发布了新的文献求助10
8秒前
深情安青应助清图采纳,获得10
8秒前
LSY完成签到,获得积分10
8秒前
娃haha发布了新的文献求助10
8秒前
9秒前
9秒前
顺心的鲂发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
muderder发布了新的文献求助10
10秒前
FartKing发布了新的文献求助10
10秒前
螺蛳粉完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727567
求助须知:如何正确求助?哪些是违规求助? 5309169
关于积分的说明 15311368
捐赠科研通 4875043
什么是DOI,文献DOI怎么找? 2618493
邀请新用户注册赠送积分活动 1568219
关于科研通互助平台的介绍 1524904