Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

投影(关系代数) 迭代重建 块(置换群论) 人工智能 氡变换 计算机科学 计算机视觉 滤波器(信号处理) 帧(网络) 断层重建 人工神经网络 算法 数学 几何学 电信
作者
Genwei Ma,Xing Zhao,Yining Zhu,Huitao Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035010-035010 被引量:3
标识
DOI:10.1088/1361-6560/ac4122
摘要

Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA完成签到,获得积分10
刚刚
1秒前
桐桐应助研友_5Y9775采纳,获得10
2秒前
3秒前
3秒前
胖大海发布了新的文献求助10
4秒前
4秒前
三个哈卡发布了新的文献求助10
5秒前
科研通AI2S应助lkk采纳,获得10
5秒前
李科研发布了新的文献求助10
6秒前
腾腾同学发布了新的文献求助10
8秒前
Akim应助浮生采纳,获得10
8秒前
abc97发布了新的文献求助10
9秒前
莫即完成签到 ,获得积分10
10秒前
小马甲应助李科研采纳,获得10
10秒前
享音发布了新的文献求助10
12秒前
14秒前
甜蜜的泥猴桃完成签到,获得积分10
14秒前
糊涂生活糊涂过完成签到 ,获得积分10
15秒前
深情安青应助无限的函采纳,获得30
16秒前
李伟完成签到,获得积分10
16秒前
腾腾同学完成签到,获得积分10
17秒前
搜集达人应助ling_lz采纳,获得10
17秒前
erlangenbio完成签到,获得积分20
18秒前
当当羊.完成签到 ,获得积分10
19秒前
啵妞发布了新的文献求助10
20秒前
21秒前
贝肯妮发布了新的文献求助10
23秒前
24秒前
24秒前
1011发布了新的文献求助10
25秒前
26秒前
Agnesma完成签到,获得积分10
26秒前
苏卿应助科研通管家采纳,获得20
26秒前
8R60d8应助科研通管家采纳,获得10
26秒前
不配.应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
26秒前
桐桐应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243425
求助须知:如何正确求助?哪些是违规求助? 2887402
关于积分的说明 8247839
捐赠科研通 2555992
什么是DOI,文献DOI怎么找? 1384147
科研通“疑难数据库(出版商)”最低求助积分说明 649812
邀请新用户注册赠送积分活动 625707