Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

投影(关系代数) 迭代重建 块(置换群论) 人工智能 氡变换 计算机科学 计算机视觉 滤波器(信号处理) 帧(网络) 断层重建 人工神经网络 算法 数学 几何学 电信
作者
Genwei Ma,Xing Zhao,Yining Zhu,Huitao Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035010-035010 被引量:3
标识
DOI:10.1088/1361-6560/ac4122
摘要

Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子西完成签到,获得积分10
刚刚
黄瓜双耳拌腐竹完成签到,获得积分10
刚刚
duke发布了新的文献求助10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得50
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
雪白的威完成签到,获得积分10
刚刚
xingyi发布了新的文献求助10
刚刚
直率的火龙果完成签到,获得积分10
刚刚
刚刚
冷酷严青发布了新的文献求助10
1秒前
rinki01完成签到,获得积分10
1秒前
谨慎觅露发布了新的文献求助10
2秒前
昂叔的头发丝儿完成签到,获得积分10
2秒前
无略发布了新的文献求助30
2秒前
3秒前
kingcoming发布了新的文献求助10
3秒前
茉莉完成签到,获得积分10
3秒前
tunerling完成签到,获得积分10
3秒前
牛牛完成签到,获得积分10
4秒前
1057178963完成签到,获得积分10
4秒前
木子西发布了新的文献求助10
5秒前
彭于彦祖应助Mac采纳,获得30
5秒前
PU聚氨酯完成签到,获得积分10
5秒前
南小木完成签到,获得积分10
5秒前
宋宋发布了新的文献求助10
6秒前
sota完成签到,获得积分10
6秒前
易安完成签到,获得积分10
6秒前
7秒前
田果完成签到,获得积分20
7秒前
za==完成签到,获得积分10
7秒前
ywb完成签到,获得积分10
8秒前
kingcoming完成签到,获得积分10
8秒前
aragakkl完成签到,获得积分10
9秒前
mojito完成签到,获得积分10
9秒前
mwy发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582