Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

投影(关系代数) 迭代重建 块(置换群论) 人工智能 氡变换 计算机科学 计算机视觉 滤波器(信号处理) 帧(网络) 断层重建 人工神经网络 算法 数学 几何学 电信
作者
Genwei Ma,Xing Zhao,Yining Zhu,Huitao Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035010-035010 被引量:3
标识
DOI:10.1088/1361-6560/ac4122
摘要

Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
罗大人完成签到,获得积分10
1秒前
waddles发布了新的文献求助30
1秒前
1秒前
1秒前
小标发布了新的文献求助30
2秒前
Grace159完成签到 ,获得积分10
2秒前
zhou发布了新的文献求助30
2秒前
2秒前
可靠的问柳完成签到,获得积分20
2秒前
浪子发布了新的文献求助10
2秒前
2秒前
修脚大师完成签到,获得积分10
3秒前
复杂的含蕾完成签到 ,获得积分10
3秒前
3秒前
赖安琪完成签到 ,获得积分10
4秒前
likes发布了新的文献求助100
4秒前
澡雪完成签到,获得积分10
4秒前
4秒前
栗子完成签到,获得积分10
5秒前
妮蝶应助zzz采纳,获得10
5秒前
5秒前
CC完成签到 ,获得积分10
5秒前
renshiq完成签到,获得积分10
5秒前
6秒前
共享精神应助Patronus采纳,获得10
6秒前
张千万完成签到,获得积分10
6秒前
糖呼噜发布了新的文献求助30
6秒前
6秒前
7秒前
斯文的丹秋完成签到,获得积分10
7秒前
Clark发布了新的文献求助10
7秒前
7秒前
YaoHui发布了新的文献求助10
7秒前
7秒前
8秒前
fionadong发布了新的文献求助10
8秒前
张同学发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274