Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

投影(关系代数) 迭代重建 块(置换群论) 人工智能 氡变换 计算机科学 计算机视觉 滤波器(信号处理) 帧(网络) 断层重建 人工神经网络 算法 数学 几何学 电信
作者
Genwei Ma,Xing Zhao,Yining Zhu,Huitao Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035010-035010 被引量:3
标识
DOI:10.1088/1361-6560/ac4122
摘要

Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
智库关注了科研通微信公众号
2秒前
追寻的莺完成签到,获得积分10
3秒前
4秒前
Owen应助夏夜晚风采纳,获得10
4秒前
赵婧秀发布了新的文献求助30
6秒前
123333发布了新的文献求助10
6秒前
Lucas应助HK采纳,获得10
6秒前
7秒前
徐徐图之发布了新的文献求助10
7秒前
在水一方应助xx采纳,获得10
8秒前
wwlllzzttt发布了新的文献求助10
8秒前
豆儿嘚小豆儿应助yuziiii采纳,获得100
8秒前
不要慌完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
科研通AI6.1应助Sheldon采纳,获得10
9秒前
思源应助团子采纳,获得10
10秒前
light完成签到,获得积分10
11秒前
支妙发布了新的文献求助10
12秒前
13秒前
123333完成签到,获得积分20
13秒前
郭郭盖过完成签到,获得积分10
14秒前
14秒前
14秒前
元气马完成签到 ,获得积分10
15秒前
秋夜白完成签到,获得积分10
16秒前
不安desu完成签到,获得积分10
17秒前
Gstar完成签到,获得积分10
17秒前
18秒前
知性的藏鸟完成签到 ,获得积分10
18秒前
19秒前
20秒前
塔塔应助Evall采纳,获得10
20秒前
852应助Bonnie采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770023
求助须知:如何正确求助?哪些是违规求助? 5582550
关于积分的说明 15423156
捐赠科研通 4903584
什么是DOI,文献DOI怎么找? 2638255
邀请新用户注册赠送积分活动 1586124
关于科研通互助平台的介绍 1541285