Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

投影(关系代数) 迭代重建 块(置换群论) 人工智能 氡变换 计算机科学 计算机视觉 滤波器(信号处理) 帧(网络) 断层重建 人工神经网络 算法 数学 几何学 电信
作者
Genwei Ma,Xing Zhao,Yining Zhu,Huitao Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035010-035010 被引量:3
标识
DOI:10.1088/1361-6560/ac4122
摘要

Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
请叫我风吹麦浪应助kevin采纳,获得20
1秒前
1秒前
1秒前
吃点水果保护局完成签到 ,获得积分10
2秒前
gs完成签到,获得积分10
2秒前
Xyyy完成签到,获得积分10
2秒前
3秒前
白石杏完成签到,获得积分10
5秒前
ll200207完成签到,获得积分10
6秒前
凶狠的乐巧完成签到,获得积分10
6秒前
Lin发布了新的文献求助10
7秒前
三七发布了新的文献求助10
7秒前
7秒前
鸣隐发布了新的文献求助10
7秒前
8秒前
8秒前
软豆皮完成签到,获得积分10
8秒前
lan完成签到,获得积分10
9秒前
英姑应助松松果采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
chillin发布了新的文献求助10
11秒前
zhui发布了新的文献求助10
11秒前
薪炭林完成签到,获得积分10
12秒前
Rrr发布了新的文献求助10
12秒前
12秒前
SCISSH完成签到 ,获得积分10
12秒前
FEI发布了新的文献求助10
13秒前
科研通AI5应助奔奔采纳,获得10
14秒前
星辰大海应助八八采纳,获得20
14秒前
gaga发布了新的文献求助10
14秒前
木子加y发布了新的文献求助10
14秒前
大大泡泡完成签到,获得积分10
15秒前
852应助zhui采纳,获得10
16秒前
芒果发布了新的文献求助10
16秒前
17秒前
前百年253完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794