Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

投影(关系代数) 迭代重建 块(置换群论) 人工智能 氡变换 计算机科学 计算机视觉 滤波器(信号处理) 帧(网络) 断层重建 人工神经网络 算法 数学 几何学 电信
作者
Genwei Ma,Xing Zhao,Yining Zhu,Huitao Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035010-035010 被引量:3
标识
DOI:10.1088/1361-6560/ac4122
摘要

Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助佳jia采纳,获得20
刚刚
1秒前
酷波er应助Repro采纳,获得10
1秒前
礼已临完成签到,获得积分10
1秒前
hence发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
大模型应助Zwang采纳,获得50
2秒前
丰富的冰棍完成签到 ,获得积分10
2秒前
JamesPei应助Lv采纳,获得10
2秒前
zgrmws给酒温书生的求助进行了留言
3秒前
Lllll发布了新的文献求助10
3秒前
山野下应助隐形昊强采纳,获得10
3秒前
妙妙妙完成签到,获得积分10
3秒前
4秒前
4秒前
倩Q发布了新的文献求助10
5秒前
我爱刘惜君完成签到,获得积分10
6秒前
6秒前
情怀应助聪慧的正豪采纳,获得10
6秒前
冷傲的晓山完成签到,获得积分10
7秒前
CCC完成签到,获得积分10
7秒前
7秒前
淑儿哥哥完成签到,获得积分10
8秒前
8秒前
科目三应助ZZZZZ采纳,获得10
9秒前
djdj完成签到,获得积分20
9秒前
Mlwwq完成签到,获得积分10
10秒前
10秒前
朝阳发布了新的文献求助30
10秒前
FashionBoy应助CCC采纳,获得10
10秒前
11秒前
科研通AI6应助木子李采纳,获得10
11秒前
大皮猪发布了新的文献求助10
11秒前
tumankol发布了新的文献求助10
12秒前
13秒前
咩咩完成签到 ,获得积分10
13秒前
14秒前
Repro完成签到,获得积分10
14秒前
852应助网上飞采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441