Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography

投影(关系代数) 迭代重建 块(置换群论) 人工智能 氡变换 计算机科学 计算机视觉 滤波器(信号处理) 帧(网络) 断层重建 人工神经网络 算法 数学 几何学 电信
作者
Genwei Ma,Xing Zhao,Yining Zhu,Huitao Zhang
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035010-035010 被引量:3
标识
DOI:10.1088/1361-6560/ac4122
摘要

Several reconstruction networks have been invented to solve the problem of learning-based computed tomography (CT) reconstruction. However, the application of neural networks to tomographic reconstruction remains challenging due to unacceptable memory space requirements. In this study, we present a novel lightweight block reconstruction network (LBRN), which transforms the reconstruction operator into a deep neural network by unrolling the filter back-projection (FBP) method. Specifically, the proposed network contains two main modules, which respectively correspond to the filter and back-projection of the FBP method. The first module of the LBRN decouples the relationship of the Radon transform between the reconstructed image and the projection data. Therefore, the following module, block back-projection, can use the block reconstruction strategy. Because each image block is only connected with part-filtered projection data, the network structure is greatly simplified and the parameters of the whole network are dramatically reduced. Moreover, this approach is trained end-to-end, working directly from raw projection data, and does not depend on any initial images. Five reconstruction experiments are conducted to evaluate the performance of the proposed LBRN: full angle, low-dose CT, region of interest, metal artifact reduction and a real data experiment. The results of the experiments show that the LBRN can be effectively introduced into the reconstruction process and has outstanding advantages in terms of different reconstruction problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四海发布了新的文献求助10
刚刚
炸鸡发布了新的文献求助10
刚刚
黄豆完成签到,获得积分10
1秒前
1秒前
Jasper应助jj采纳,获得10
2秒前
驿路梨花完成签到,获得积分10
2秒前
2秒前
2秒前
粗暴的鱼发布了新的文献求助10
4秒前
太叔易云发布了新的文献求助10
4秒前
晓晓完成签到,获得积分10
5秒前
Tracy.完成签到,获得积分10
5秒前
5秒前
5秒前
nuliya发布了新的文献求助10
6秒前
zsy发布了新的文献求助10
8秒前
善良的樱完成签到 ,获得积分10
8秒前
淡淡尔烟发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
阿依咕噜完成签到,获得积分10
10秒前
NexusExplorer应助炸鸡采纳,获得10
10秒前
10秒前
YUYUYU发布了新的文献求助10
11秒前
JamesPei应助美女采纳,获得10
11秒前
jia完成签到 ,获得积分10
11秒前
传奇3应助小蚂蚁采纳,获得10
13秒前
温柔的秋柳完成签到,获得积分10
14秒前
14秒前
柏林寒冬应助wenqiliu采纳,获得10
16秒前
寒冷猫咪发布了新的文献求助20
16秒前
豌豆炸薯片完成签到,获得积分10
16秒前
CodeCraft应助太叔易云采纳,获得10
18秒前
赵海帆完成签到,获得积分10
18秒前
科研人完成签到,获得积分10
18秒前
19秒前
19秒前
FashionBoy应助LucyLi采纳,获得10
20秒前
20秒前
无花果应助满意芯采纳,获得10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497