Rapid Identification of Peucedanum praeruptorum Dunn and Its Adulterants by Hand-Held Near-Infrared Spectroscopy

鉴定(生物学) 红外光谱学 化学 有机化学 植物 生物
作者
Fang Wang,Bin Jia,Xiangwen Song,Jun Dai,Xiaoli Li,Haidi Gao,Haoyu Pan,Hui Yan,Bangxing Han
出处
期刊:Journal of AOAC International [Oxford University Press]
卷期号:105 (3): 928-933 被引量:4
标识
DOI:10.1093/jaoacint/qsab160
摘要

Peucedanum praeruptorum Dunn (PPD) is a traditional Chinese medical herb of high medical and economic value. However, PPD is often adulterated by inexpensive plants. In order to establish an integrated and straightforward methodology to identify adulterated PPD products, hand-held near-infrared spectroscopy (NIRS) combined with chemical pattern recognition techniques was employed. The standard normal variate (SNV) was used to preprocess the original near-infrared spectra. Principal component analysis (PCA), linear discriminant analysis (LDA), and partial least-squares regression analysis (PLSDA) were used to construct the recognition models. PCA analysis could not correctly distinguish PPD from non-PPD. However, based on absorbance in the spectral region of 1405-2442 nm and SNV pretreatment, the accuracy of the LDA model was above 90% at identifying genuine PPD. Compared with the LDA method, the PLSDA model is more stable and reliable, and its model prediction accuracy was 93.4%. The combination of NIRS and chemometric methods based on a hand-held near-infrared spectrometer is an efficient, nondestructive, and reliable method for validating traditional Chinese medicine PPD. The advanced method based on a hand-held near-infrared spectrometer can be used for rapid identification and quality evaluation of PPD in the field, medicinal material markets, and points of sale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尤川完成签到,获得积分10
1秒前
蛋斤发布了新的文献求助10
1秒前
蓬蒿人发布了新的文献求助10
3秒前
NexusExplorer应助终须有采纳,获得10
3秒前
asia完成签到 ,获得积分10
4秒前
领导范儿应助Ting采纳,获得10
5秒前
6秒前
安子完成签到 ,获得积分10
6秒前
yuanjie发布了新的文献求助30
8秒前
syy完成签到 ,获得积分10
8秒前
丘比特应助山楂采纳,获得10
8秒前
9秒前
9秒前
10秒前
12秒前
天天完成签到 ,获得积分10
12秒前
14秒前
asdfqwer应助wfk采纳,获得10
14秒前
15秒前
zyt发布了新的文献求助10
17秒前
18秒前
Ting发布了新的文献求助10
19秒前
19秒前
21秒前
一颗egg发布了新的文献求助30
21秒前
朴素的不乐完成签到 ,获得积分10
22秒前
22秒前
XS_QI发布了新的文献求助10
22秒前
忧心的鞋子完成签到,获得积分10
24秒前
24秒前
AoAoo完成签到,获得积分10
25秒前
王壮壮完成签到,获得积分10
25秒前
snail01完成签到,获得积分10
26秒前
bio生物发布了新的文献求助10
26秒前
Orange应助积极万声采纳,获得10
26秒前
28秒前
30秒前
30秒前
30秒前
隐形曼青应助zjh采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Key Thinkers in Industrial and Organizational Psychology 500
A positive solution of a nonlinear elliptic equation in $\Bbb R^N$ with $G$-symmetry 200
Eine Fährtenschicht im mittelfränkischen Blasensandstein 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5869564
求助须知:如何正确求助?哪些是违规求助? 6453599
关于积分的说明 15661432
捐赠科研通 4985461
什么是DOI,文献DOI怎么找? 2688396
邀请新用户注册赠送积分活动 1630824
关于科研通互助平台的介绍 1588937