清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic x-rays

编号 分割 计算机科学 人工智能 数据集 乳牙 杠杆(统计) 集合(抽象数据类型) 计算机视觉 牙科 算法 医学 程序设计语言
作者
Laís Pinheiro,Bernardo Silva,Brenda Sobrinho,F. Lima,Patrícia Ramos Cury,Luciano Oliveira
标识
DOI:10.1117/12.2606211
摘要

Panoramic X-rays are an essential tool to assist dentistry experts in their diagnostic procedures. Dentists can analyze the anatomical and pathological structures while planing orthodontic, periodontal, and surgical treatments. Even though detecting, numbering, and segmenting teeth are essential tasks to leverage automatic analysis on panoramic X-rays, it is lacking in the literature a study and a data set that considers at the same time deciduous and permanent teeth in a wide variety of panoramic X-rays. To fill this gap, this work introduces a novel, challenging, and high-variable public data set labeled from scratch. This data set incorporates new elements such as instance overlapping and deciduous teeth, supporting our study on tooth numbering and segmentation. Our efforts aim to improve the segmentation on the boundaries because they are the main hurdle of the instance segmentation methods. For that, we investigate and compare (quantitatively and qualitatively) two Mask R-CNN-based solutions: the standard one, with a fully convolutional network, and another one that employs the PointRend module on the top. Our findings attest to the feasibility of extending segmentation and numbering to deciduous teeth through end-to-end deep learning architectures, as well as, the higher performance of the Mask R-CNN with PointRend either on instance segmentation (mAP of +2 percentage points) or the numbering (mAP of +1.2 percentage points) on the test data set. We hope that our findings and our new data set support the development of new tools to assist professionals in faster diagnosis, making upon panoramic X-rays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mm完成签到,获得积分10
2秒前
kuyi完成签到 ,获得积分10
29秒前
Guo完成签到 ,获得积分10
33秒前
mengli完成签到 ,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
叶YE发布了新的文献求助30
2分钟前
科目三应助叶YE采纳,获得10
3分钟前
重要铃铛完成签到 ,获得积分10
3分钟前
叶YE完成签到,获得积分10
3分钟前
Arthur完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
xiaxiao应助科研通管家采纳,获得100
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
xiaxiao应助科研通管家采纳,获得50
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
mp5完成签到,获得积分10
4分钟前
王多肉完成签到,获得积分10
4分钟前
青山完成签到 ,获得积分10
5分钟前
FL完成签到,获得积分10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
cherry_mm应助科研通管家采纳,获得80
5分钟前
xiaxiao应助科研通管家采纳,获得80
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671300
求助须知:如何正确求助?哪些是违规求助? 3228149
关于积分的说明 9778643
捐赠科研通 2938406
什么是DOI,文献DOI怎么找? 1610009
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736003