Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea

卷积神经网络 风浪模型 有效波高 深度学习 波浪模型 计算机科学 人工神经网络 人工智能 风浪 波高 领域(数学) 时间轴 机器学习 风速 气象学 数学 统计 地质学 地理 海洋学 纯数学
作者
Gen Bai,Zhifeng Wang,Xianye Zhu,Yanqing Feng
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:118: 103012-103012 被引量:35
标识
DOI:10.1016/j.apor.2021.103012
摘要

• A novel deep learning framework is proposed for the 2-D regional wave field forecast. • The random search algorithm is used to optimize the hyperparameters of CNN. • The sensitivity analysis of different input schemes is discussed. • Time fitness and spatial distribution of forecasting results are analyzed and discussed with 5 indicators. • long-term wave height forecasts with different lead times of 12 h, 24 h, 48 h,72 h are carried out. Currently, the methods of wave prediction based on deep learning theory primarily focus on single-point wave prediction; however, two-dimensional (2-D) wave field prediction can help understand the overall wave situation in a certain area, which has practical value. Given the current situation, in which numerical wave forecasting requires vast computing resources and huge time cost, a 2-D deep learning regional wave field forecast model based on a convolutional neural network (CNN) is proposed to forecast the significant wave height (SWH) in the South China Sea. In this study, the random search algorithm was used to optimize the hyper-parameters of the CNN model with the SWH, 10 m u-component of wind (U10), and 10 m v-component of wind (V10) as input parameters. The 2-D correlation coefficient (R2) was used to evaluate the correlation between the wave field and the wind field, and a sensitivity analysis of 56 different working conditions with the optimal forecast model was performed to obtain the best input scheme. Five evaluation indicators were used to evaluate the accuracy and stability of the model. Three typical field positions were selected. Month-averaged and year-averaged wave field forecasts were studied to comprehensively evaluate the model forecast results. The results indicate that the existing models can not only accurately forecast the change in wave height along the timeline, but also provide a good estimation of the spatial wave height distribution in the 2-D wave field. SWH forecasts for lead time periods of 12 h, 24 h, 48 h, 72 h were performed using the optimal input scheme and the optimal model. The mean absolute percentage errors (MAPE) for these lead time periods were 8.55%, 12.95%, 16.85%, and 19.48%, respectively, which demonstrates the ability of the model to perform long-term forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mouxq发布了新的文献求助10
刚刚
小九的呀完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
紫色哀伤完成签到,获得积分10
1秒前
1秒前
Theo完成签到,获得积分10
1秒前
善学以致用应助程暮光采纳,获得10
2秒前
tcmz9发布了新的文献求助10
4秒前
bkagyin应助DW采纳,获得10
4秒前
TreasureDB完成签到,获得积分10
5秒前
不会游泳的鱼完成签到 ,获得积分10
5秒前
5秒前
WonderHua应助沙都学不会采纳,获得10
5秒前
5秒前
5秒前
5秒前
小啦啦3082发布了新的文献求助10
6秒前
6秒前
7秒前
完美世界应助MIST采纳,获得10
10秒前
QYQX发布了新的文献求助10
12秒前
科研通AI2S应助jam采纳,获得10
12秒前
12秒前
13秒前
14秒前
15秒前
大模型应助怡然的一斩采纳,获得10
15秒前
CipherSage应助宇宙凛采纳,获得10
16秒前
刻苦的黑米完成签到,获得积分10
16秒前
16秒前
16秒前
一一发布了新的文献求助10
18秒前
orixero应助wyw采纳,获得30
18秒前
Mycee完成签到 ,获得积分10
19秒前
酷酷啤酒关注了科研通微信公众号
20秒前
程暮光完成签到,获得积分10
21秒前
MIST发布了新的文献求助10
21秒前
赵赵a完成签到,获得积分10
22秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348426
求助须知:如何正确求助?哪些是违规求助? 2974660
关于积分的说明 8665159
捐赠科研通 2655280
什么是DOI,文献DOI怎么找? 1453945
科研通“疑难数据库(出版商)”最低求助积分说明 673175
邀请新用户注册赠送积分活动 663411