亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea

卷积神经网络 风浪模型 有效波高 深度学习 波浪模型 计算机科学 人工神经网络 人工智能 风浪 波高 领域(数学) 时间轴 机器学习 风速 气象学 数学 统计 地质学 地理 海洋学 纯数学
作者
Gen Bai,Zhifeng Wang,Xianye Zhu,Yanqing Feng
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:118: 103012-103012 被引量:37
标识
DOI:10.1016/j.apor.2021.103012
摘要

• A novel deep learning framework is proposed for the 2-D regional wave field forecast. • The random search algorithm is used to optimize the hyperparameters of CNN. • The sensitivity analysis of different input schemes is discussed. • Time fitness and spatial distribution of forecasting results are analyzed and discussed with 5 indicators. • long-term wave height forecasts with different lead times of 12 h, 24 h, 48 h,72 h are carried out. Currently, the methods of wave prediction based on deep learning theory primarily focus on single-point wave prediction; however, two-dimensional (2-D) wave field prediction can help understand the overall wave situation in a certain area, which has practical value. Given the current situation, in which numerical wave forecasting requires vast computing resources and huge time cost, a 2-D deep learning regional wave field forecast model based on a convolutional neural network (CNN) is proposed to forecast the significant wave height (SWH) in the South China Sea. In this study, the random search algorithm was used to optimize the hyper-parameters of the CNN model with the SWH, 10 m u-component of wind (U10), and 10 m v-component of wind (V10) as input parameters. The 2-D correlation coefficient (R2) was used to evaluate the correlation between the wave field and the wind field, and a sensitivity analysis of 56 different working conditions with the optimal forecast model was performed to obtain the best input scheme. Five evaluation indicators were used to evaluate the accuracy and stability of the model. Three typical field positions were selected. Month-averaged and year-averaged wave field forecasts were studied to comprehensively evaluate the model forecast results. The results indicate that the existing models can not only accurately forecast the change in wave height along the timeline, but also provide a good estimation of the spatial wave height distribution in the 2-D wave field. SWH forecasts for lead time periods of 12 h, 24 h, 48 h, 72 h were performed using the optimal input scheme and the optimal model. The mean absolute percentage errors (MAPE) for these lead time periods were 8.55%, 12.95%, 16.85%, and 19.48%, respectively, which demonstrates the ability of the model to perform long-term forecasts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研王完成签到 ,获得积分10
3秒前
开拖拉机的芍药完成签到 ,获得积分10
3秒前
陈文娜发布了新的文献求助10
4秒前
爱学习的YY完成签到 ,获得积分10
6秒前
9秒前
把饭拼好给你完成签到 ,获得积分10
12秒前
zhangjianzeng完成签到 ,获得积分10
14秒前
void发布了新的文献求助10
14秒前
aicz完成签到,获得积分10
15秒前
善学以致用应助tony采纳,获得30
22秒前
星辰大海应助陈文娜采纳,获得30
22秒前
wanjingwan完成签到 ,获得积分10
23秒前
23秒前
Jasper应助qinsu采纳,获得10
23秒前
bxb完成签到,获得积分10
25秒前
傻傻的从梦完成签到,获得积分10
25秒前
26秒前
鹅鹅大王发布了新的文献求助10
27秒前
任仕春完成签到,获得积分10
28秒前
anhuiwsy完成签到 ,获得积分0
29秒前
31秒前
31秒前
研友_VZG7GZ应助赵冰琪采纳,获得10
32秒前
tony发布了新的文献求助30
34秒前
进取拼搏完成签到,获得积分10
35秒前
37秒前
ckyyds完成签到 ,获得积分10
38秒前
void完成签到,获得积分10
41秒前
qinsu发布了新的文献求助10
42秒前
李昆朋完成签到,获得积分10
43秒前
46秒前
棠臻完成签到 ,获得积分10
50秒前
浮游应助合适的问旋采纳,获得10
51秒前
illuminate完成签到 ,获得积分10
52秒前
qinsu完成签到,获得积分20
56秒前
张美环完成签到,获得积分10
57秒前
媛肖完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509205
求助须知:如何正确求助?哪些是违规求助? 4604206
关于积分的说明 14489373
捐赠科研通 4538907
什么是DOI,文献DOI怎么找? 2487224
邀请新用户注册赠送积分活动 1469636
关于科研通互助平台的介绍 1441867