Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea

卷积神经网络 风浪模型 有效波高 深度学习 波浪模型 计算机科学 人工神经网络 人工智能 风浪 波高 领域(数学) 时间轴 机器学习 风速 气象学 数学 统计 地质学 地理 海洋学 纯数学
作者
Gen Bai,Zhifeng Wang,Xianye Zhu,Yanqing Feng
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:118: 103012-103012 被引量:37
标识
DOI:10.1016/j.apor.2021.103012
摘要

• A novel deep learning framework is proposed for the 2-D regional wave field forecast. • The random search algorithm is used to optimize the hyperparameters of CNN. • The sensitivity analysis of different input schemes is discussed. • Time fitness and spatial distribution of forecasting results are analyzed and discussed with 5 indicators. • long-term wave height forecasts with different lead times of 12 h, 24 h, 48 h,72 h are carried out. Currently, the methods of wave prediction based on deep learning theory primarily focus on single-point wave prediction; however, two-dimensional (2-D) wave field prediction can help understand the overall wave situation in a certain area, which has practical value. Given the current situation, in which numerical wave forecasting requires vast computing resources and huge time cost, a 2-D deep learning regional wave field forecast model based on a convolutional neural network (CNN) is proposed to forecast the significant wave height (SWH) in the South China Sea. In this study, the random search algorithm was used to optimize the hyper-parameters of the CNN model with the SWH, 10 m u-component of wind (U10), and 10 m v-component of wind (V10) as input parameters. The 2-D correlation coefficient (R2) was used to evaluate the correlation between the wave field and the wind field, and a sensitivity analysis of 56 different working conditions with the optimal forecast model was performed to obtain the best input scheme. Five evaluation indicators were used to evaluate the accuracy and stability of the model. Three typical field positions were selected. Month-averaged and year-averaged wave field forecasts were studied to comprehensively evaluate the model forecast results. The results indicate that the existing models can not only accurately forecast the change in wave height along the timeline, but also provide a good estimation of the spatial wave height distribution in the 2-D wave field. SWH forecasts for lead time periods of 12 h, 24 h, 48 h, 72 h were performed using the optimal input scheme and the optimal model. The mean absolute percentage errors (MAPE) for these lead time periods were 8.55%, 12.95%, 16.85%, and 19.48%, respectively, which demonstrates the ability of the model to perform long-term forecasts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助cookie486采纳,获得10
1秒前
执着烧鹅完成签到,获得积分10
3秒前
spirit发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
咸鱼发布了新的文献求助10
4秒前
冯静完成签到,获得积分10
4秒前
5秒前
瞿琼瑶发布了新的文献求助10
5秒前
蛋白激酶发布了新的文献求助10
5秒前
Jay完成签到,获得积分10
5秒前
5秒前
5秒前
QFeng发布了新的文献求助10
6秒前
小熊猫完成签到,获得积分10
6秒前
orixero应助嘿嘿采纳,获得10
8秒前
彭于晏应助阳光的安波采纳,获得10
8秒前
尺子尺子和池子完成签到,获得积分10
9秒前
9秒前
16关闭了16文献求助
10秒前
张益达完成签到,获得积分0
10秒前
木木完成签到,获得积分10
11秒前
蛋白激酶完成签到,获得积分10
11秒前
偷菜帅哥完成签到,获得积分10
12秒前
12秒前
allanqiao发布了新的文献求助10
13秒前
TiAmo完成签到 ,获得积分10
13秒前
现代宝宝完成签到,获得积分10
14秒前
14秒前
科研通AI6应助瞿琼瑶采纳,获得10
14秒前
Jackcaosky完成签到 ,获得积分10
14秒前
spirit完成签到,获得积分10
15秒前
mmm发布了新的文献求助10
15秒前
16秒前
16秒前
Chandler完成签到,获得积分10
16秒前
水123发布了新的文献求助10
17秒前
可爱的函函应助橘子采纳,获得10
18秒前
18秒前
受伤芝麻完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600283
求助须知:如何正确求助?哪些是违规求助? 4685999
关于积分的说明 14841023
捐赠科研通 4676153
什么是DOI,文献DOI怎么找? 2538671
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167