Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea

卷积神经网络 风浪模型 有效波高 深度学习 波浪模型 计算机科学 人工神经网络 人工智能 风浪 波高 领域(数学) 时间轴 机器学习 风速 气象学 数学 统计 地质学 地理 海洋学 纯数学
作者
Gen Bai,Zhifeng Wang,Xianye Zhu,Yanqing Feng
出处
期刊:Applied Ocean Research [Elsevier BV]
卷期号:118: 103012-103012 被引量:37
标识
DOI:10.1016/j.apor.2021.103012
摘要

• A novel deep learning framework is proposed for the 2-D regional wave field forecast. • The random search algorithm is used to optimize the hyperparameters of CNN. • The sensitivity analysis of different input schemes is discussed. • Time fitness and spatial distribution of forecasting results are analyzed and discussed with 5 indicators. • long-term wave height forecasts with different lead times of 12 h, 24 h, 48 h,72 h are carried out. Currently, the methods of wave prediction based on deep learning theory primarily focus on single-point wave prediction; however, two-dimensional (2-D) wave field prediction can help understand the overall wave situation in a certain area, which has practical value. Given the current situation, in which numerical wave forecasting requires vast computing resources and huge time cost, a 2-D deep learning regional wave field forecast model based on a convolutional neural network (CNN) is proposed to forecast the significant wave height (SWH) in the South China Sea. In this study, the random search algorithm was used to optimize the hyper-parameters of the CNN model with the SWH, 10 m u-component of wind (U10), and 10 m v-component of wind (V10) as input parameters. The 2-D correlation coefficient (R2) was used to evaluate the correlation between the wave field and the wind field, and a sensitivity analysis of 56 different working conditions with the optimal forecast model was performed to obtain the best input scheme. Five evaluation indicators were used to evaluate the accuracy and stability of the model. Three typical field positions were selected. Month-averaged and year-averaged wave field forecasts were studied to comprehensively evaluate the model forecast results. The results indicate that the existing models can not only accurately forecast the change in wave height along the timeline, but also provide a good estimation of the spatial wave height distribution in the 2-D wave field. SWH forecasts for lead time periods of 12 h, 24 h, 48 h, 72 h were performed using the optimal input scheme and the optimal model. The mean absolute percentage errors (MAPE) for these lead time periods were 8.55%, 12.95%, 16.85%, and 19.48%, respectively, which demonstrates the ability of the model to perform long-term forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Akiba完成签到,获得积分10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
Wianiu应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
宇宙法完成签到,获得积分10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
斯文明杰发布了新的文献求助10
4秒前
天天快乐应助勾晓彤采纳,获得10
4秒前
4秒前
Profeto应助胡先生的小口袋采纳,获得10
5秒前
Profeto应助胡先生的小口袋采纳,获得10
6秒前
科研q完成签到 ,获得积分10
6秒前
6秒前
6秒前
Ava应助zhuzhu采纳,获得10
6秒前
6秒前
节步青发布了新的文献求助10
8秒前
小邢发布了新的文献求助10
8秒前
桐桐应助端庄煎饼采纳,获得10
9秒前
里大炮发布了新的文献求助10
10秒前
wozai发布了新的文献求助10
10秒前
社会主义接班人完成签到,获得积分10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215597
求助须知:如何正确求助?哪些是违规求助? 4390701
关于积分的说明 13670504
捐赠科研通 4252590
什么是DOI,文献DOI怎么找? 2333220
邀请新用户注册赠送积分活动 1330838
关于科研通互助平台的介绍 1284652