Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea

卷积神经网络 风浪模型 有效波高 深度学习 波浪模型 计算机科学 人工神经网络 人工智能 风浪 波高 领域(数学) 时间轴 机器学习 风速 气象学 数学 统计 地质学 地理 海洋学 纯数学
作者
Gen Bai,Zhifeng Wang,Xianye Zhu,Yanqing Feng
出处
期刊:Applied Ocean Research [Elsevier BV]
卷期号:118: 103012-103012 被引量:37
标识
DOI:10.1016/j.apor.2021.103012
摘要

• A novel deep learning framework is proposed for the 2-D regional wave field forecast. • The random search algorithm is used to optimize the hyperparameters of CNN. • The sensitivity analysis of different input schemes is discussed. • Time fitness and spatial distribution of forecasting results are analyzed and discussed with 5 indicators. • long-term wave height forecasts with different lead times of 12 h, 24 h, 48 h,72 h are carried out. Currently, the methods of wave prediction based on deep learning theory primarily focus on single-point wave prediction; however, two-dimensional (2-D) wave field prediction can help understand the overall wave situation in a certain area, which has practical value. Given the current situation, in which numerical wave forecasting requires vast computing resources and huge time cost, a 2-D deep learning regional wave field forecast model based on a convolutional neural network (CNN) is proposed to forecast the significant wave height (SWH) in the South China Sea. In this study, the random search algorithm was used to optimize the hyper-parameters of the CNN model with the SWH, 10 m u-component of wind (U10), and 10 m v-component of wind (V10) as input parameters. The 2-D correlation coefficient (R2) was used to evaluate the correlation between the wave field and the wind field, and a sensitivity analysis of 56 different working conditions with the optimal forecast model was performed to obtain the best input scheme. Five evaluation indicators were used to evaluate the accuracy and stability of the model. Three typical field positions were selected. Month-averaged and year-averaged wave field forecasts were studied to comprehensively evaluate the model forecast results. The results indicate that the existing models can not only accurately forecast the change in wave height along the timeline, but also provide a good estimation of the spatial wave height distribution in the 2-D wave field. SWH forecasts for lead time periods of 12 h, 24 h, 48 h, 72 h were performed using the optimal input scheme and the optimal model. The mean absolute percentage errors (MAPE) for these lead time periods were 8.55%, 12.95%, 16.85%, and 19.48%, respectively, which demonstrates the ability of the model to perform long-term forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
222完成签到,获得积分10
1秒前
小白狗完成签到,获得积分10
2秒前
Xxxzzq发布了新的文献求助10
2秒前
JJ完成签到,获得积分10
4秒前
4秒前
gulugulu完成签到,获得积分20
4秒前
科研通AI2S应助斯文明杰采纳,获得10
5秒前
dlm12138完成签到,获得积分20
7秒前
gulugulu发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
高婉婷完成签到,获得积分20
10秒前
10秒前
懒羊羊大王完成签到,获得积分10
11秒前
12秒前
13秒前
陈道哥发布了新的文献求助10
13秒前
香蕉觅云应助Kikisman采纳,获得10
14秒前
14秒前
科研通AI5应助hehe采纳,获得10
16秒前
qql发布了新的文献求助10
16秒前
斯文明杰发布了新的文献求助10
17秒前
tutueer完成签到,获得积分20
18秒前
18秒前
勤奋天真完成签到 ,获得积分10
20秒前
Jaden完成签到,获得积分10
20秒前
子虚一尘发布了新的文献求助10
20秒前
20秒前
tutueer发布了新的文献求助10
21秒前
23秒前
夏姬宁静发布了新的文献求助10
24秒前
楠D完成签到,获得积分10
25秒前
25秒前
踏实的惋庭完成签到,获得积分10
26秒前
28秒前
28秒前
zhxia完成签到,获得积分10
29秒前
Kikisman发布了新的文献求助10
29秒前
独特白昼完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Highway Capacity Manual 7th Edition 800
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4632944
求助须知:如何正确求助?哪些是违规求助? 4029107
关于积分的说明 12466293
捐赠科研通 3715327
什么是DOI,文献DOI怎么找? 2050021
邀请新用户注册赠送积分活动 1081627
科研通“疑难数据库(出版商)”最低求助积分说明 963954