Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea

卷积神经网络 风浪模型 有效波高 深度学习 波浪模型 计算机科学 人工神经网络 人工智能 风浪 波高 领域(数学) 时间轴 机器学习 风速 气象学 数学 统计 地质学 地理 海洋学 纯数学
作者
Gen Bai,Zhifeng Wang,Xianye Zhu,Yanqing Feng
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:118: 103012-103012 被引量:35
标识
DOI:10.1016/j.apor.2021.103012
摘要

• A novel deep learning framework is proposed for the 2-D regional wave field forecast. • The random search algorithm is used to optimize the hyperparameters of CNN. • The sensitivity analysis of different input schemes is discussed. • Time fitness and spatial distribution of forecasting results are analyzed and discussed with 5 indicators. • long-term wave height forecasts with different lead times of 12 h, 24 h, 48 h,72 h are carried out. Currently, the methods of wave prediction based on deep learning theory primarily focus on single-point wave prediction; however, two-dimensional (2-D) wave field prediction can help understand the overall wave situation in a certain area, which has practical value. Given the current situation, in which numerical wave forecasting requires vast computing resources and huge time cost, a 2-D deep learning regional wave field forecast model based on a convolutional neural network (CNN) is proposed to forecast the significant wave height (SWH) in the South China Sea. In this study, the random search algorithm was used to optimize the hyper-parameters of the CNN model with the SWH, 10 m u-component of wind (U10), and 10 m v-component of wind (V10) as input parameters. The 2-D correlation coefficient (R2) was used to evaluate the correlation between the wave field and the wind field, and a sensitivity analysis of 56 different working conditions with the optimal forecast model was performed to obtain the best input scheme. Five evaluation indicators were used to evaluate the accuracy and stability of the model. Three typical field positions were selected. Month-averaged and year-averaged wave field forecasts were studied to comprehensively evaluate the model forecast results. The results indicate that the existing models can not only accurately forecast the change in wave height along the timeline, but also provide a good estimation of the spatial wave height distribution in the 2-D wave field. SWH forecasts for lead time periods of 12 h, 24 h, 48 h, 72 h were performed using the optimal input scheme and the optimal model. The mean absolute percentage errors (MAPE) for these lead time periods were 8.55%, 12.95%, 16.85%, and 19.48%, respectively, which demonstrates the ability of the model to perform long-term forecasts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rrr发布了新的文献求助10
1秒前
跳跃的静曼完成签到,获得积分10
1秒前
丰富的不惜完成签到,获得积分10
2秒前
3秒前
wfc完成签到,获得积分10
3秒前
浅梨涡完成签到 ,获得积分10
5秒前
JamesPei应助椰子熟了耶采纳,获得20
6秒前
hanyang965发布了新的文献求助10
6秒前
orixero应助喵呜采纳,获得10
6秒前
6秒前
6秒前
7秒前
en发布了新的文献求助10
7秒前
8秒前
白宝宝北北白应助氕氘氚采纳,获得10
8秒前
9秒前
进取拼搏完成签到,获得积分10
9秒前
hehsk完成签到,获得积分10
9秒前
无限鞅完成签到,获得积分20
9秒前
10秒前
DY完成签到 ,获得积分10
11秒前
郑仕完成签到,获得积分10
11秒前
11秒前
进取拼搏发布了新的文献求助10
12秒前
顺顺发布了新的文献求助10
12秒前
12秒前
在水一方应助涛涛采纳,获得10
12秒前
英姑应助义气的傲松采纳,获得10
13秒前
13秒前
哭泣蛋挞完成签到 ,获得积分10
14秒前
sweetbearm应助通~采纳,获得10
14秒前
田様应助吃饭用大碗采纳,获得10
15秒前
15秒前
16秒前
17秒前
阿斯蒂和琴酒完成签到 ,获得积分10
17秒前
珂珂发布了新的文献求助10
19秒前
19秒前
迟大猫应助我是站长才怪采纳,获得30
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808