Testing the Effects of High-Dimensional Covariates via Aggregating Cumulative Covariances

同方差 异方差 协变量 检验统计量 维数之咒 数学 统计假设检验 计算机科学 范畴变量 无效假设 计量经济学 应用数学 统计
作者
Runze Li,Kai Xu,Yeqing Zhou,Liping Zhu
标识
DOI:10.1080/01621459.2022.2044334
摘要

AbstractIn this article, we test for the effects of high-dimensional covariates on the response. In many applications, different components of covariates usually exhibit various levels of variation, which is ubiquitous in high-dimensional data. To simultaneously accommodate such heteroscedasticity and high dimensionality, we propose a novel test based on an aggregation of the marginal cumulative covariances, requiring no prior information on the specific form of regression models. Our proposed test statistic is scale-invariance, tuning-free and convenient to implement. The asymptotic normality of the proposed statistic is established under the null hypothesis. We further study the asymptotic relative efficiency of our proposed test with respect to the state-of-art universal tests in two different settings: one is designed for high-dimensional linear model and the other is introduced in a completely model-free setting. A remarkable finding reveals that, thanks to the scale-invariance property, even under the high-dimensional linear models, our proposed test is asymptotically much more powerful than existing competitors for the covariates with heterogeneous variances while maintaining high efficiency for the homoscedastic ones. Supplementary materials for this article are available online.Keywords: Conditional mean independenceCumulative covarianceHigh dimensionMartingale difference divergence Supplementary MaterialsWe provide proofs of Theorems 1–4, fast algorithms for computing the two competitive test statistics, and additional discussions and simulations on the asymptotic relative efficiency in the supplementary material.AcknowledgmentsWe are grateful to the Editor, the Associate Editor and reviewers for their constructive comments, which lead to a significant improvement of this work. We are also very grateful to Professor Min Qian for providing us with the R codes of McKeague and Qian (Citation2015).FundingThis work is supported by National Natural Science Foundation of China (12171477, 11901006, 12001405, 11731011, 11931014), Natural Science Foundation of Anhui Province (1908085QA06) and Natural Science Foundation of Beijing Municipality (Z190002), Fundamental Research Funds for the Central Universities (22120210557), and National Science Foundation (DMS-1820702, 1953196 and 2015539).Additional informationFundingThis work is supported by National Natural Science Foundation of China (12171477, 11901006, 12001405, 11731011, 11931014), Natural Science Foundation of Anhui Province (1908085QA06) and Natural Science Foundation of Beijing Municipality (Z190002), Fundamental Research Funds for the Central Universities (22120210557), and National Science Foundation (DMS-1820702, 1953196 and 2015539).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花花完成签到,获得积分10
刚刚
幸运的靖柔完成签到,获得积分10
刚刚
iNk应助布丁采纳,获得20
1秒前
1秒前
1秒前
落后紫夏完成签到,获得积分10
1秒前
彭于晏应助1111采纳,获得10
1秒前
wen发布了新的文献求助10
1秒前
li完成签到,获得积分10
2秒前
火火完成签到,获得积分10
2秒前
祭礼之龙完成签到,获得积分10
2秒前
青黄应助七柚采纳,获得20
2秒前
3秒前
甜馨发布了新的文献求助10
3秒前
wx发布了新的文献求助10
4秒前
yyygc完成签到,获得积分10
4秒前
123456发布了新的文献求助10
4秒前
lei发布了新的文献求助10
4秒前
小王发布了新的文献求助10
5秒前
5秒前
打打应助lin采纳,获得10
5秒前
cells关注了科研通微信公众号
6秒前
津海007发布了新的文献求助10
6秒前
波波完成签到 ,获得积分10
6秒前
6秒前
Bonnie发布了新的文献求助10
6秒前
忧伤的映阳完成签到,获得积分10
6秒前
安静笑晴完成签到,获得积分10
7秒前
zzzxxxxxyyyyy完成签到 ,获得积分10
9秒前
zero完成签到,获得积分10
10秒前
10秒前
10秒前
幽默山兰发布了新的文献求助10
11秒前
JOY发布了新的文献求助30
11秒前
11秒前
11秒前
23xyke完成签到,获得积分10
12秒前
星辰大海应助丸子采纳,获得10
12秒前
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060