Online Streaming Features Causal Discovery Algorithm Based on Partial Rank Correlation

偏相关 条件独立性 算法 计算机科学 秩(图论) 特征(语言学) 人工智能 模式识别(心理学) 数学 数据挖掘 相关性 语言学 哲学 几何学 组合数学
作者
Jing Yang,Liufeng Jiang,Anbo Shen,Aiguo Wang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:4 (1): 197-208 被引量:2
标识
DOI:10.1109/tai.2022.3151034
摘要

Aimedat the problem of dynamic causal discovery in the era of artificial intelligence, this article combines partial rank correlation coefficients and streaming features in the field of Bayesian network structure learning and proposes a new online streaming feature causal discovery algorithm based on partial rank correlation named the partial rank casual discovery streaming feature based algorithm. This algorithm is not only suitable for Bayesian causal structure learning in dynamic feature spaces generated by sequential streams of features but can also effectively process multivariate linear Gaussian and nonlinear non-Gaussian data. We present three main contributions. First, for arbitrarily distributed datasets, which can be generated by the additive noise model, we proved that the partial rank correlation coefficient can be used as the criterion for the conditional independence test and explored the distribution of corresponding statistics. Second, the PCSDSF algorithm redefined the relevance based on partial rank statistic prospects and then redefined conditional dependence or independence. This method can significantly reduce the number of conditional independence tests and achieves a good time performance. Finally, theoretical analysis and several experiments proved the reliability of the algorithm. A simulation showed that on average, the PCSDSF algorithm outperforms existing algorithms in terms of both the accuracy and time performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
niNe3YUE应助zhoumaoyuan采纳,获得10
2秒前
4秒前
6秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
7秒前
Jenny发布了新的文献求助10
8秒前
fzh发布了新的文献求助10
11秒前
11秒前
12秒前
15秒前
KYTYYDS发布了新的文献求助10
16秒前
HanluMa完成签到 ,获得积分10
16秒前
fzh完成签到,获得积分10
20秒前
Jenny完成签到,获得积分10
22秒前
伟立完成签到,获得积分10
22秒前
29秒前
30秒前
然12138完成签到 ,获得积分10
30秒前
香蕉觅云应助SnownS采纳,获得10
30秒前
川荣李奈完成签到 ,获得积分10
34秒前
xinbowey发布了新的文献求助10
34秒前
火星上向珊完成签到,获得积分10
37秒前
39秒前
柳条儿完成签到,获得积分10
39秒前
如意幻枫完成签到,获得积分10
43秒前
44秒前
44秒前
渔婆发布了新的文献求助10
45秒前
47秒前
风趣的泥猴桃完成签到 ,获得积分10
48秒前
48秒前
zgsjymysmyy发布了新的文献求助30
49秒前
fuchao完成签到,获得积分10
49秒前
牧谷发布了新的文献求助10
50秒前
好吃的火龙果完成签到 ,获得积分10
51秒前
天边发布了新的文献求助10
52秒前
东方越彬发布了新的文献求助10
53秒前
赘婿应助sunny采纳,获得10
53秒前
53秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566