亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online Streaming Features Causal Discovery Algorithm Based on Partial Rank Correlation

偏相关 条件独立性 算法 计算机科学 秩(图论) 特征(语言学) 人工智能 模式识别(心理学) 数学 数据挖掘 相关性 几何学 语言学 组合数学 哲学
作者
Jing Yang,Liufeng Jiang,Anbo Shen,Aiguo Wang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:4 (1): 197-208 被引量:2
标识
DOI:10.1109/tai.2022.3151034
摘要

Aimedat the problem of dynamic causal discovery in the era of artificial intelligence, this article combines partial rank correlation coefficients and streaming features in the field of Bayesian network structure learning and proposes a new online streaming feature causal discovery algorithm based on partial rank correlation named the partial rank casual discovery streaming feature based algorithm. This algorithm is not only suitable for Bayesian causal structure learning in dynamic feature spaces generated by sequential streams of features but can also effectively process multivariate linear Gaussian and nonlinear non-Gaussian data. We present three main contributions. First, for arbitrarily distributed datasets, which can be generated by the additive noise model, we proved that the partial rank correlation coefficient can be used as the criterion for the conditional independence test and explored the distribution of corresponding statistics. Second, the PCSDSF algorithm redefined the relevance based on partial rank statistic prospects and then redefined conditional dependence or independence. This method can significantly reduce the number of conditional independence tests and achieves a good time performance. Finally, theoretical analysis and several experiments proved the reliability of the algorithm. A simulation showed that on average, the PCSDSF algorithm outperforms existing algorithms in terms of both the accuracy and time performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccj发布了新的文献求助10
6秒前
英姑应助yuanyuan采纳,获得50
7秒前
心行完成签到 ,获得积分10
9秒前
oleskarabach完成签到,获得积分20
9秒前
俊逸翠柏完成签到 ,获得积分10
12秒前
bellapp完成签到 ,获得积分10
12秒前
17秒前
沉默的延恶完成签到,获得积分10
18秒前
笨笨的怜雪完成签到 ,获得积分10
38秒前
41秒前
41秒前
上官若男应助科研通管家采纳,获得10
43秒前
orixero应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
21度多云完成签到,获得积分10
50秒前
56秒前
trophozoite完成签到 ,获得积分10
1分钟前
1分钟前
橘子发布了新的文献求助10
1分钟前
qiuqiu完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
SCIfafafafa发布了新的文献求助10
1分钟前
hua完成签到,获得积分10
1分钟前
于是乎完成签到 ,获得积分10
1分钟前
bkagyin应助大力的图图采纳,获得10
1分钟前
所所应助SCIfafafafa采纳,获得10
1分钟前
LZR发布了新的文献求助10
1分钟前
科目三应助迅速初柳采纳,获得10
1分钟前
个木完成签到,获得积分10
1分钟前
1分钟前
yanglinhai完成签到 ,获得积分10
1分钟前
慕青应助可靠的寒风采纳,获得10
1分钟前
luckydog发布了新的文献求助10
1分钟前
2分钟前
eclo完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
周墨完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746419
求助须知:如何正确求助?哪些是违规求助? 5434098
关于积分的说明 15355366
捐赠科研通 4886387
什么是DOI,文献DOI怎么找? 2627215
邀请新用户注册赠送积分活动 1575696
关于科研通互助平台的介绍 1532425