Online Streaming Features Causal Discovery Algorithm Based on Partial Rank Correlation

偏相关 条件独立性 算法 计算机科学 秩(图论) 特征(语言学) 人工智能 模式识别(心理学) 数学 数据挖掘 相关性 几何学 语言学 组合数学 哲学
作者
Jing Yang,Liufeng Jiang,Anbo Shen,Aiguo Wang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:4 (1): 197-208 被引量:2
标识
DOI:10.1109/tai.2022.3151034
摘要

Aimedat the problem of dynamic causal discovery in the era of artificial intelligence, this article combines partial rank correlation coefficients and streaming features in the field of Bayesian network structure learning and proposes a new online streaming feature causal discovery algorithm based on partial rank correlation named the partial rank casual discovery streaming feature based algorithm. This algorithm is not only suitable for Bayesian causal structure learning in dynamic feature spaces generated by sequential streams of features but can also effectively process multivariate linear Gaussian and nonlinear non-Gaussian data. We present three main contributions. First, for arbitrarily distributed datasets, which can be generated by the additive noise model, we proved that the partial rank correlation coefficient can be used as the criterion for the conditional independence test and explored the distribution of corresponding statistics. Second, the PCSDSF algorithm redefined the relevance based on partial rank statistic prospects and then redefined conditional dependence or independence. This method can significantly reduce the number of conditional independence tests and achieves a good time performance. Finally, theoretical analysis and several experiments proved the reliability of the algorithm. A simulation showed that on average, the PCSDSF algorithm outperforms existing algorithms in terms of both the accuracy and time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
晨晨完成签到,获得积分10
2秒前
jingjili完成签到,获得积分10
2秒前
3秒前
Huang完成签到 ,获得积分10
3秒前
陆亚完成签到,获得积分20
4秒前
5秒前
6秒前
是小曹啊发布了新的文献求助10
6秒前
宋宋宋2发布了新的文献求助10
7秒前
jingjili发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
在水一方应助hhkj采纳,获得10
8秒前
xavier发布了新的文献求助10
9秒前
研友_VZG7GZ应助ixueyi采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
哟喂发布了新的文献求助10
10秒前
10秒前
Lliu完成签到,获得积分10
10秒前
oxfocean完成签到,获得积分10
11秒前
小小发布了新的文献求助10
11秒前
hygge发布了新的文献求助10
12秒前
wangnn发布了新的文献求助10
12秒前
迁湾发布了新的文献求助10
13秒前
晨晨发布了新的文献求助10
13秒前
M张完成签到,获得积分10
14秒前
小马甲应助勇敢兔兔采纳,获得10
14秒前
14秒前
15秒前
15秒前
yang发布了新的文献求助10
15秒前
明月清风完成签到,获得积分20
16秒前
17秒前
18秒前
Joker发布了新的文献求助10
18秒前
领导范儿应助洁净的醉波采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123780
求助须知:如何正确求助?哪些是违规求助? 4328150
关于积分的说明 13486520
捐赠科研通 4162505
什么是DOI,文献DOI怎么找? 2281552
邀请新用户注册赠送积分活动 1282938
关于科研通互助平台的介绍 1222044