Online Streaming Features Causal Discovery Algorithm Based on Partial Rank Correlation

偏相关 条件独立性 算法 计算机科学 秩(图论) 特征(语言学) 人工智能 模式识别(心理学) 数学 数据挖掘 相关性 几何学 语言学 组合数学 哲学
作者
Jing Yang,Liufeng Jiang,Anbo Shen,Aiguo Wang
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:4 (1): 197-208 被引量:2
标识
DOI:10.1109/tai.2022.3151034
摘要

Aimedat the problem of dynamic causal discovery in the era of artificial intelligence, this article combines partial rank correlation coefficients and streaming features in the field of Bayesian network structure learning and proposes a new online streaming feature causal discovery algorithm based on partial rank correlation named the partial rank casual discovery streaming feature based algorithm. This algorithm is not only suitable for Bayesian causal structure learning in dynamic feature spaces generated by sequential streams of features but can also effectively process multivariate linear Gaussian and nonlinear non-Gaussian data. We present three main contributions. First, for arbitrarily distributed datasets, which can be generated by the additive noise model, we proved that the partial rank correlation coefficient can be used as the criterion for the conditional independence test and explored the distribution of corresponding statistics. Second, the PCSDSF algorithm redefined the relevance based on partial rank statistic prospects and then redefined conditional dependence or independence. This method can significantly reduce the number of conditional independence tests and achieves a good time performance. Finally, theoretical analysis and several experiments proved the reliability of the algorithm. A simulation showed that on average, the PCSDSF algorithm outperforms existing algorithms in terms of both the accuracy and time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
1秒前
meimale完成签到,获得积分10
1秒前
雨相所至发布了新的文献求助10
1秒前
呆萌井完成签到,获得积分10
2秒前
微笑的若魔完成签到 ,获得积分10
3秒前
北城完成签到 ,获得积分10
3秒前
束玲玲完成签到,获得积分10
3秒前
江雁完成签到,获得积分10
5秒前
满天星辰独览完成签到 ,获得积分10
5秒前
5秒前
bee完成签到 ,获得积分10
5秒前
小宁完成签到,获得积分10
7秒前
hbj完成签到,获得积分10
7秒前
张一完成签到,获得积分10
10秒前
windmill完成签到,获得积分10
10秒前
赘婿应助David采纳,获得10
11秒前
CipherSage应助是我呀吼采纳,获得10
11秒前
倪好完成签到,获得积分10
14秒前
谦让汝燕完成签到,获得积分10
14秒前
16秒前
1234@完成签到 ,获得积分10
17秒前
雨相所至完成签到,获得积分10
17秒前
研友_8oYg4n完成签到,获得积分10
17秒前
和光同尘发布了新的文献求助20
17秒前
迷路凌柏完成签到 ,获得积分10
17秒前
18秒前
冬亦发布了新的文献求助10
19秒前
清脆迎曼应助小喜采纳,获得10
19秒前
机智毛豆完成签到,获得积分10
20秒前
20秒前
jzmulyl完成签到,获得积分10
20秒前
薛乎虚完成签到 ,获得积分10
20秒前
gaogao完成签到,获得积分10
21秒前
糖炒栗子完成签到,获得积分10
22秒前
汉堡包应助马前人采纳,获得10
22秒前
m李完成签到 ,获得积分10
22秒前
吴旭东发布了新的文献求助10
23秒前
23秒前
deluohaida完成签到,获得积分20
25秒前
科研小白完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570728
求助须知:如何正确求助?哪些是违规求助? 3992198
关于积分的说明 12356899
捐赠科研通 3664905
什么是DOI,文献DOI怎么找? 2019801
邀请新用户注册赠送积分活动 1054208
科研通“疑难数据库(出版商)”最低求助积分说明 941798