嵌套
β多样性
物种丰富度
生态学
伽马多样性
栖息地
非生物成分
系统发育多样性
社区
地理
生物多样性
α多样性
河岸带
群落结构
生物
系统发育树
生物化学
基因
作者
Ankita Sinha,Rohan K. Menzies,Nilanjan Chatterjee,M. Vasudeva Rao,Rohit Naniwadekar
标识
DOI:10.3389/fevo.2022.788184
摘要
Abiotic and biotic factors drive compositional differences among local species assemblages. Determining the influence of different drivers on beta diversity patterns can provide insights into processes governing community organization. Examining beta diversity patterns along taxonomic, phylogenetic and functional dimensions enables a nuanced understanding of underlying processes that govern community assembly and dynamics. The dynamic and complex riparian habitats in the Himalaya, and the hyper-diverse riverine bird community offer a fascinating setup to examine the role of environmental factors in influencing community structuring. Using a large dataset on river bird communities from field census across multiple drainages in the Indian Himalaya, we aimed at discerning processes that structure these communities through an understanding of pair-wise dissimilarities in species composition across sites. We determined the relative contributions of turnover and nestedness in taxonomic, phylogenetic, and functional beta diversity patterns in the Eastern and Western Himalaya that differ in species richness. Generalized Dissimilarity Modeling was used to examine the relative contributions of climatic, geographic, and anthropogenic factors toward explaining different metrics of beta diversity. The riverine bird communities in the drier and seasonal Western Himalaya were poorer in species richness, more phylogenetically and functionally clustered than that in the Eastern Himalaya. The contribution of the turnover component to the overall beta diversity was higher than the nestedness component in river bird communities, particularly in the Eastern Himalaya. Habitat and climatic factors differentially influenced the beta diversity patterns in both Eastern and Western Himalaya, with river width consistently explaining a large variation in beta diversity in the east and the west. The results show that environmental filtering plays a crucial role in structuring riverine bird communities in the Himalayan headwaters, highlighting the need to ameliorate the threats posed by the slew of hydroelectric projects and forest loss in the region.
科研通智能强力驱动
Strongly Powered by AbleSci AI