ECG signals-based automated diagnosis of congestive heart failure using Deep CNN and LSTM architecture

心力衰竭 计算机科学 人工智能 背景(考古学) 可靠性(半导体) 模式识别(心理学) 心脏病学 医学 量子力学 生物 物理 古生物学 功率(物理)
作者
S. Kusuma,K. Jothi
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (1): 247-257 被引量:24
标识
DOI:10.1016/j.bbe.2022.02.003
摘要

In humans, Congestive Heart Failure (CHF) refers to the chronic progressive condition that drastically influences the pumping potentiality of the heart muscle. This CHF has the possibility of increasing health expenditure, morbidity, mortality and minimized quality of life. In this context, Electrocardiogram (ECG) is considered as the simplest and a non-invasive diagnosis method that aids in detecting and demonstrating the realizable changes in CHF. However, diagnosing CHF based on manual exploration of ECG signals is frequently impacted by errors as duration and small amplitude of the signals either investigated separately or in the integration is determined to neither specific nor sensitive. At this juncture, the reliability and diagnostic objectivity of ECG signals during the CHF detection process may be enhanced through the inclusion of automated computer-aided system. In this paper, Deep CNN and LSTM Architecture (DCNN-LSTM)-based automated diagnosis system is proposed for detecting CHF using ECG signals. In specific, CNN is included for the purpose of extracting deep features and LSTM is used for attaining the objective of CHF detection using the extracted features. This proposed DCNN-LSTM is evolved with minimal pre-processing of ECG signals and does not involve any classification process or manual engineered features during diagnosis. The experimentation of the proposed DCNN-LSTM conducted using the real time ECG signals datasets confirmed an accuracy of 99.52, sensitivity of 99.31%, specificity of 99.28%, F-Score of 98.94% and AUC of 99.9%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
科研通AI2S应助在鹿特丹采纳,获得10
3秒前
4秒前
温柔野心家完成签到 ,获得积分10
6秒前
7秒前
AoAoo发布了新的文献求助10
7秒前
XJY完成签到,获得积分10
8秒前
XpenG完成签到,获得积分10
8秒前
8秒前
光电效应完成签到,获得积分10
8秒前
兰亭序发布了新的文献求助10
9秒前
10秒前
10秒前
13秒前
美好的跳跳糖完成签到,获得积分10
14秒前
genomed应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得20
15秒前
genomed应助科研通管家采纳,获得10
15秒前
寻道图强应助科研通管家采纳,获得30
15秒前
情怀应助科研通管家采纳,获得10
15秒前
16秒前
呆萌的鼠标完成签到 ,获得积分10
17秒前
纯真曲奇发布了新的文献求助10
19秒前
所所应助Lily采纳,获得10
19秒前
AoAoo发布了新的文献求助10
22秒前
粗犷的灵松完成签到 ,获得积分10
24秒前
淡定采枫完成签到,获得积分10
26秒前
DNA甲基转移酶完成签到,获得积分10
27秒前
热心的友灵完成签到,获得积分10
27秒前
Xc完成签到,获得积分20
29秒前
pangpang完成签到,获得积分10
33秒前
Owen应助rrrrrrry采纳,获得10
33秒前
34秒前
沉默友绿完成签到,获得积分10
35秒前
苏卿应助自然浩阑采纳,获得10
35秒前
38秒前
沉默友绿发布了新的文献求助10
39秒前
40秒前
吴志新完成签到,获得积分20
43秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159794
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889157
捐赠科研通 2469817
什么是DOI,文献DOI怎么找? 1315087
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012