Semi-supervised multi-view graph convolutional networks with application to webpage classification

计算机科学 图形 卷积神经网络 半监督学习 人工智能 特征学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Fei Wu,Xiao‐Yuan Jing,Pengfei Wei,Chao Lan,Yimu Ji,Guoping Jiang,Qinghua Huang
出处
期刊:Information Sciences [Elsevier]
卷期号:591: 142-154 被引量:36
标识
DOI:10.1016/j.ins.2022.01.013
摘要

Semi-supervised multi-view learning (SML) is a hot research topic in recent years, with webpage classification being a typical application domain. The performance of SML is further boosted by the successful introduction of graph convolutional network (GCN) for learning discriminant node representations. However, there remains much space to improve the GCN-based SML technique, particularly on how to adaptively learn optimal graph structures for multi-view graph convolutional representation learning and make full use of the label and structure information in labeled and unlabeled multi-view samples. In this paper, we propose a novel SML approach named semi-supervised multi-view graph convolutional networks (SMGCN) for webpage classification. It contains a multi-view graph construction module and a semi-supervised multi-view graph convolutional representation learning module, which are integrated into a unified network architecture. The former aims to obtain optimal graph structure for each view. And the latter performs graph convolutional representation learning for each view, and provides an inter-view attention scheme to fuse multi-view representations. Network training is guided by the losses defined on both label and feature spaces, such that the label and structure information in labeled and unlabeled data is fully explored. Experiments on two widely used webpage datasets demonstrate that SMGCN can achieve state-of-the-art classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木完成签到,获得积分10
刚刚
帅气善斓发布了新的文献求助20
1秒前
1秒前
周琦发布了新的文献求助10
1秒前
dew应助魏欣娜采纳,获得10
1秒前
搞怪人雄发布了新的文献求助10
1秒前
虚心焦完成签到 ,获得积分10
1秒前
2秒前
第一个相遇完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI6.1应助Gc采纳,获得10
3秒前
geo完成签到 ,获得积分10
4秒前
不能没有科研完成签到,获得积分10
4秒前
4秒前
李健的小迷弟应助Royalll采纳,获得30
5秒前
研友_ZelDDn完成签到,获得积分20
5秒前
6秒前
Zel博博完成签到,获得积分10
6秒前
6秒前
6秒前
桐桐应助小何采纳,获得10
6秒前
大模型应助肖邦采纳,获得150
7秒前
蓝天应助涨知识ing采纳,获得10
7秒前
8秒前
8秒前
9秒前
10秒前
10秒前
拉拉霍霍发布了新的文献求助10
10秒前
小蘑菇应助凶凶采纳,获得10
10秒前
Ava应助研友_ZelDDn采纳,获得10
11秒前
ZZZ发布了新的文献求助10
11秒前
11秒前
慕青应助Kate采纳,获得10
11秒前
CipherSage应助阿紫采纳,获得10
12秒前
cqwswfl完成签到,获得积分10
12秒前
zzz完成签到,获得积分10
12秒前
ttt发布了新的文献求助10
13秒前
完美梨愁发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106