Semi-supervised multi-view graph convolutional networks with application to webpage classification

计算机科学 图形 卷积神经网络 半监督学习 人工智能 特征学习 机器学习 模式识别(心理学) 理论计算机科学
作者
Fei Wu,Xiao‐Yuan Jing,Pengfei Wei,Chao Lan,Yimu Ji,Guoping Jiang,Qinghua Huang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:591: 142-154 被引量:36
标识
DOI:10.1016/j.ins.2022.01.013
摘要

Semi-supervised multi-view learning (SML) is a hot research topic in recent years, with webpage classification being a typical application domain. The performance of SML is further boosted by the successful introduction of graph convolutional network (GCN) for learning discriminant node representations. However, there remains much space to improve the GCN-based SML technique, particularly on how to adaptively learn optimal graph structures for multi-view graph convolutional representation learning and make full use of the label and structure information in labeled and unlabeled multi-view samples. In this paper, we propose a novel SML approach named semi-supervised multi-view graph convolutional networks (SMGCN) for webpage classification. It contains a multi-view graph construction module and a semi-supervised multi-view graph convolutional representation learning module, which are integrated into a unified network architecture. The former aims to obtain optimal graph structure for each view. And the latter performs graph convolutional representation learning for each view, and provides an inter-view attention scheme to fuse multi-view representations. Network training is guided by the losses defined on both label and feature spaces, such that the label and structure information in labeled and unlabeled data is fully explored. Experiments on two widely used webpage datasets demonstrate that SMGCN can achieve state-of-the-art classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太平村完成签到,获得积分10
刚刚
刚刚
littlehappiness完成签到,获得积分10
1秒前
1秒前
1秒前
vogo7发布了新的文献求助10
2秒前
土豪的黑夜完成签到,获得积分10
2秒前
2秒前
诸葛语琴完成签到,获得积分10
2秒前
3秒前
Mira完成签到,获得积分10
3秒前
平常瑛完成签到,获得积分10
3秒前
搜集达人应助M1有光采纳,获得10
4秒前
香蕉觅云应助totpto采纳,获得10
4秒前
5秒前
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
踏实如曼完成签到,获得积分10
5秒前
田様应助科研通管家采纳,获得10
5秒前
iNk应助科研通管家采纳,获得10
5秒前
5秒前
Esther完成签到,获得积分10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
乐乐应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
华仔应助living笑白采纳,获得10
6秒前
小小完成签到,获得积分10
6秒前
6秒前
6秒前
学术牛马发布了新的文献求助10
6秒前
6秒前
chase完成签到 ,获得积分10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009487
求助须知:如何正确求助?哪些是违规求助? 3549466
关于积分的说明 11302335
捐赠科研通 3284069
什么是DOI,文献DOI怎么找? 1810464
邀请新用户注册赠送积分活动 886301
科研通“疑难数据库(出版商)”最低求助积分说明 811339