Feature Split–Merge–Enhancement Network for Remote Sensing Object Detection

计算机科学 合并(版本控制) 人工智能 目标检测 计算机视觉 特征(语言学) 偏移量(计算机科学) 探测器 模式识别(心理学) 特征提取 电信 语言学 哲学 情报检索 程序设计语言
作者
Wenping Ma,Na Li,Hao Zhu,Licheng Jiao,Xu Tang,Yuwei Guo,Biao Hou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:110
标识
DOI:10.1109/tgrs.2022.3140856
摘要

Recently, multicategory object detection in high-resolution remote sensing images is still a challenge. First, objects with significant scale differences exist in one scene simultaneously, so it is generally difficult for the detectors to balance the detection performance of large and small objects. Second, because of the complex background and the objects’ densely distributed characteristics in the remote sensing images, the extracted features usually have noise and blurred boundaries, which interfere with the detection performance of the object detectors. With this observation, we propose an end-to-end scale-aware network called feature split–merge–enhancement network (SME-Net) for remote sensing object detection, composed of the feature split-and-merge (FSM) module, the offset-error rectification (OER) module, and the object saliency enhancement (OSE) strategy. FSM eliminates salient information of large objects to highlight the features of small objects in the shallow feature maps. It also transmits the effective detailed features of large objects to the deep feature maps, alleviating feature confusion between multiscale objects. OER corrects the inconsistency of the features spatial layout among the multilayer feature maps by the proposed offset loss, so as to achieve supervised elimination and transmission in FSM. OSE enhances the features of interests and suppresses the background information by the proposed membership function, thus preventing false detection and missed detection caused by noise and blurred boundaries. The effectiveness of the proposed algorithm has been verified on multiple datasets. Our code is available at: https://github.com/Momuli/SMENet.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助追忆采纳,获得10
刚刚
1秒前
1秒前
1秒前
2秒前
zxx5313491完成签到,获得积分10
3秒前
fuxixixi发布了新的文献求助10
4秒前
4秒前
whisper发布了新的文献求助10
4秒前
hehe完成签到,获得积分10
4秒前
勤恳绝义发布了新的文献求助10
5秒前
5秒前
李琳赛发布了新的文献求助30
6秒前
香蕉觅云应助jinzhen采纳,获得10
6秒前
zxx5313491发布了新的文献求助10
7秒前
7秒前
闪闪的YOSH完成签到,获得积分10
8秒前
10秒前
10秒前
英俊的铭应助仂尤采纳,获得10
11秒前
11秒前
fuxixixi完成签到,获得积分10
12秒前
领导范儿应助伯赏笑白采纳,获得10
12秒前
14秒前
14秒前
脑洞疼应助自然的芙蓉采纳,获得10
15秒前
yy发布了新的文献求助10
15秒前
zym完成签到,获得积分10
15秒前
Hello应助简单千秋采纳,获得10
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
坦率的含海完成签到,获得积分10
19秒前
nuomi完成签到,获得积分10
20秒前
爆米花应助噗噜噜采纳,获得10
20秒前
JamesPei应助kejianhao8采纳,获得10
21秒前
zym发布了新的文献求助10
21秒前
JamesPei应助负责的谷云采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824