亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature Split–Merge–Enhancement Network for Remote Sensing Object Detection

计算机科学 合并(版本控制) 人工智能 目标检测 计算机视觉 特征(语言学) 偏移量(计算机科学) 探测器 模式识别(心理学) 特征提取 电信 语言学 哲学 情报检索 程序设计语言
作者
Wenping Ma,Na Li,Hao Zhu,Licheng Jiao,Xu Tang,Yuwei Guo,Biao Hou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:136
标识
DOI:10.1109/tgrs.2022.3140856
摘要

Recently, multicategory object detection in high-resolution remote sensing images is still a challenge. First, objects with significant scale differences exist in one scene simultaneously, so it is generally difficult for the detectors to balance the detection performance of large and small objects. Second, because of the complex background and the objects’ densely distributed characteristics in the remote sensing images, the extracted features usually have noise and blurred boundaries, which interfere with the detection performance of the object detectors. With this observation, we propose an end-to-end scale-aware network called feature split–merge–enhancement network (SME-Net) for remote sensing object detection, composed of the feature split-and-merge (FSM) module, the offset-error rectification (OER) module, and the object saliency enhancement (OSE) strategy. FSM eliminates salient information of large objects to highlight the features of small objects in the shallow feature maps. It also transmits the effective detailed features of large objects to the deep feature maps, alleviating feature confusion between multiscale objects. OER corrects the inconsistency of the features spatial layout among the multilayer feature maps by the proposed offset loss, so as to achieve supervised elimination and transmission in FSM. OSE enhances the features of interests and suppresses the background information by the proposed membership function, thus preventing false detection and missed detection caused by noise and blurred boundaries. The effectiveness of the proposed algorithm has been verified on multiple datasets. Our code is available at: https://github.com/Momuli/SMENet.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangchenjie完成签到,获得积分10
1秒前
Kristopher完成签到 ,获得积分10
2秒前
辛勤的诗柳应助找论文的潇采纳,获得100
2秒前
研时友发布了新的文献求助10
4秒前
ceeray23发布了新的文献求助20
5秒前
DragonAca完成签到,获得积分10
6秒前
科研通AI6应助任性的冷荷采纳,获得10
6秒前
8秒前
8秒前
把饭拼好给你完成签到 ,获得积分10
9秒前
嵩嵩发布了新的文献求助10
13秒前
14秒前
时尚丹寒完成签到 ,获得积分10
16秒前
欣慰元蝶应助xushangyuan采纳,获得10
17秒前
17秒前
大力的含卉完成签到,获得积分10
21秒前
爆米花应助Solkatt采纳,获得10
22秒前
24秒前
Li发布了新的文献求助10
28秒前
云初应助天天呼的海角采纳,获得20
31秒前
正直的友容完成签到,获得积分10
32秒前
32秒前
李健应助XIA采纳,获得10
35秒前
从容芮完成签到,获得积分0
38秒前
欣慰外套完成签到 ,获得积分10
40秒前
40秒前
42秒前
dreamer完成签到 ,获得积分10
43秒前
46秒前
zxy发布了新的文献求助10
47秒前
不被定义的风完成签到,获得积分10
48秒前
49秒前
lanmi完成签到,获得积分10
54秒前
Akim应助笨笨的元风采纳,获得10
55秒前
清逸发布了新的文献求助10
55秒前
XIA发布了新的文献求助10
55秒前
六个核桃完成签到,获得积分10
55秒前
一个绝望的文盲x完成签到,获得积分10
1分钟前
无花果应助zxy采纳,获得10
1分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548989
求助须知:如何正确求助?哪些是违规求助? 4634415
关于积分的说明 14634428
捐赠科研通 4575749
什么是DOI,文献DOI怎么找? 2509284
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456346