Feature Split–Merge–Enhancement Network for Remote Sensing Object Detection

计算机科学 合并(版本控制) 人工智能 目标检测 计算机视觉 特征(语言学) 偏移量(计算机科学) 探测器 模式识别(心理学) 特征提取 电信 情报检索 语言学 哲学 程序设计语言
作者
Wenping Ma,Na Li,Hao Zhu,Licheng Jiao,Xu Tang,Yuwei Guo,Biao Hou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:88
标识
DOI:10.1109/tgrs.2022.3140856
摘要

Recently, multicategory object detection in high-resolution remote sensing images is still a challenge. First, objects with significant scale differences exist in one scene simultaneously, so it is generally difficult for the detectors to balance the detection performance of large and small objects. Second, because of the complex background and the objects’ densely distributed characteristics in the remote sensing images, the extracted features usually have noise and blurred boundaries, which interfere with the detection performance of the object detectors. With this observation, we propose an end-to-end scale-aware network called feature split–merge–enhancement network (SME-Net) for remote sensing object detection, composed of the feature split-and-merge (FSM) module, the offset-error rectification (OER) module, and the object saliency enhancement (OSE) strategy. FSM eliminates salient information of large objects to highlight the features of small objects in the shallow feature maps. It also transmits the effective detailed features of large objects to the deep feature maps, alleviating feature confusion between multiscale objects. OER corrects the inconsistency of the features spatial layout among the multilayer feature maps by the proposed offset loss, so as to achieve supervised elimination and transmission in FSM. OSE enhances the features of interests and suppresses the background information by the proposed membership function, thus preventing false detection and missed detection caused by noise and blurred boundaries. The effectiveness of the proposed algorithm has been verified on multiple datasets. Our code is available at: https://github.com/Momuli/SMENet.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amumu完成签到,获得积分10
刚刚
runtang完成签到,获得积分10
刚刚
1257应助高挑的谷槐采纳,获得10
刚刚
刚刚
Jasper应助NekoNeko采纳,获得10
1秒前
搜集达人应助Liuya采纳,获得10
1秒前
CG2021发布了新的文献求助10
2秒前
Akim应助神明采纳,获得10
2秒前
2秒前
2秒前
cff完成签到 ,获得积分10
3秒前
小蘑菇应助lgd采纳,获得10
4秒前
swing完成签到,获得积分10
4秒前
潇洒南烟完成签到,获得积分10
4秒前
5秒前
5秒前
swing发布了新的文献求助10
6秒前
6秒前
6秒前
Cyx完成签到,获得积分10
7秒前
7秒前
7秒前
ZCM发布了新的文献求助10
8秒前
兔子完成签到,获得积分10
8秒前
8秒前
坚定的向雪完成签到,获得积分10
8秒前
9秒前
yin完成签到 ,获得积分10
9秒前
9秒前
GGDA发布了新的文献求助10
10秒前
优美的谷槐完成签到,获得积分10
10秒前
牧瞻完成签到,获得积分10
10秒前
集力申完成签到,获得积分10
10秒前
10秒前
神威公瑾完成签到,获得积分10
10秒前
毒理小妮发布了新的文献求助10
11秒前
12秒前
12秒前
高挑的谷槐完成签到,获得积分10
12秒前
invisiable发布了新的文献求助30
13秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082132
求助须知:如何正确求助?哪些是违规求助? 2735334
关于积分的说明 7536806
捐赠科研通 2384951
什么是DOI,文献DOI怎么找? 1264558
科研通“疑难数据库(出版商)”最低求助积分说明 612673
版权声明 597623