Battery‐Driven N 2 Electrolysis Enabled by High‐Entropy Catalysts: From Theoretical Prediction to Prototype Model

法拉第效率 催化作用 析氧 电解 材料科学 电化学 阳极 电解水 纳米技术 化学工程
作者
Yuanmiao Sun,Lei Yu,Shuaishuai Xu,Sicong Xie,Lili Jiang,Jingjing Duan,Junwu Zhu,Sheng Chen
出处
期刊:Small [Wiley]
卷期号:: 2106358-2106358
标识
DOI:10.1002/smll.202106358
摘要

A small-scale standalone device of nitrogen (N2 ) splitting holds great promise for producing ammonia (NH3 ) in a decentralized manner as the compensation or replacement of centralized Haber-Bosch process. However, the design of such a device has been impeded by sluggish kinetics of its half reactions, i.e., cathodic N2 reduction reaction (NRR) and anodic oxygen evolution reaction (OER). Here, it is predicted from density function theory that high-entropy oxides (HEOs) are potential catalysts for promoting NRR and OER, and subsequently develop a facile procedure to synthesize HEOs in the morphology of sea urchin-shaped hollow nanospheres assembled from ultrathin nanosheets. The excellent electrocatalytic activities of HEOs for both NRR (NH3 yield rate: 47.58 µg h-1 mg-1 and Faradaic efficiency (FE): 10.74%) and OER (215 mV @10 mA cm-2 ) are demonstrated. Consequently, a prototype device of N2 electrolysis driven by commercial batteries is constructed, which can operate smoothly and deliver remarkable NH3 yield rate (41.11 µg h-1 mg-1 ) and FE (14.14%). Further mechanism study has attributed the excellent catalytic performances of HEOs to their unique electronic structures originated from multi-metal synergistic effects and entropy increase effects. The work will provide new clues for designing versatile catalysts and devices for large-scale industrialization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yyf完成签到,获得积分10
1秒前
XWT完成签到,获得积分10
1秒前
虚安完成签到 ,获得积分10
1秒前
xqy完成签到 ,获得积分10
1秒前
啵乐乐发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
momo完成签到,获得积分10
3秒前
慕青应助饕餮1235采纳,获得10
3秒前
小蘑菇应助CC采纳,获得10
4秒前
白白完成签到,获得积分10
4秒前
4秒前
4秒前
苏苏完成签到,获得积分10
5秒前
5秒前
wu完成签到,获得积分10
5秒前
5秒前
6秒前
MADKAI发布了新的文献求助10
6秒前
6秒前
李健的小迷弟应助111采纳,获得10
7秒前
Accept应助wintercyan采纳,获得20
7秒前
哲999完成签到,获得积分10
7秒前
Mian完成签到,获得积分10
7秒前
8秒前
8秒前
于嗣濠完成签到 ,获得积分10
8秒前
36456657应助CC采纳,获得10
8秒前
优雅山柏发布了新的文献求助10
9秒前
Jacky完成签到,获得积分10
9秒前
脑洞疼应助无情的白桃采纳,获得10
9秒前
mm发布了新的文献求助10
9秒前
10秒前
10秒前
zoko发布了新的文献求助10
10秒前
10秒前
曾经的臻发布了新的文献求助10
10秒前
华仔应助S1mple_gentleman采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740