Real-time image-based air quality estimation by deep learning neural networks

空气质量指数 卷积神经网络 深度学习 人工神经网络 人工智能 计算机科学 色调 空气污染 机器学习 数据挖掘 地理 气象学 有机化学 化学
作者
Pu-Yun Kow,I-Wen Hsia,Li‐Chiu Chang,Fi‐John Chang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:307: 114560-114560 被引量:39
标识
DOI:10.1016/j.jenvman.2022.114560
摘要

Air quality profoundly impacts public health and environmental equity. Efficient and inexpensive air quality monitoring instruments could be greatly beneficial for human health and air pollution control. This study proposes an image-based deep learning model (CNN-RC) that integrates a convolutional neural network (CNN) and a regression classifier (RC) to estimate air quality at areas of interest through feature extraction from photos and feature classification into air quality levels. The models were trained and tested on datasets with different combinations of the current image, the baseline image, and HSV (hue, saturation, value) statistics for increasing model reliability and estimation accuracy. A total of 3549 hourly air quality datasets (including photos, PM2.5, PM10, and the air quality index (AQI)) collected at the Linyuan air quality monitoring station of Kaohsiung City in Taiwan constituted the case study. The main breakthrough of this study is to timely produce an accurate image-based estimation of several pollutants simultaneously by using only one single deep learning model. The test results show that estimation accuracy in terms of R2 for PM2.5, PM10, and AQI based on daytime (nighttime) images reaches 76% (83%), 84% (84%), and 76% (74%), respectively, which demonstrates the great capability of our method. The proposed model offers a promising solution for rapid and reliable multi-pollutant estimation and classification based solely on captured images. This readily scalable measurement approach could address major gaps between air quality data acquired from expensive instruments worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
机智羞花发布了新的文献求助10
2秒前
小熊发布了新的文献求助10
2秒前
学分发布了新的文献求助10
2秒前
3秒前
3秒前
夏夏发布了新的文献求助10
3秒前
4秒前
Mency0101完成签到,获得积分10
4秒前
5秒前
5秒前
搜集达人应助callmecarlos采纳,获得10
5秒前
平淡白昼发布了新的文献求助10
5秒前
抹茶芝士酸奶完成签到,获得积分10
5秒前
阿良发布了新的文献求助10
5秒前
zsw完成签到,获得积分10
6秒前
传奇3应助娟娟采纳,获得10
6秒前
blue完成签到,获得积分10
6秒前
6秒前
7秒前
科目三应助泡芙采纳,获得10
7秒前
sje发布了新的文献求助10
8秒前
失眠的桐发布了新的文献求助10
8秒前
清爽的向秋完成签到 ,获得积分10
8秒前
大蒜味酸奶钊完成签到 ,获得积分10
9秒前
Linxiu发布了新的文献求助10
9秒前
zmf完成签到,获得积分10
10秒前
pangpang完成签到,获得积分10
10秒前
11秒前
郑祺祺发布了新的文献求助10
11秒前
12秒前
赵鑫雅完成签到,获得积分20
12秒前
顾矜应助zfl采纳,获得10
13秒前
刘艳林完成签到,获得积分10
13秒前
HFBB完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
活泼的惜儿完成签到 ,获得积分10
13秒前
心碎的黄焖鸡完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251748
求助须知:如何正确求助?哪些是违规求助? 4415796
关于积分的说明 13747415
捐赠科研通 4287606
什么是DOI,文献DOI怎么找? 2352502
邀请新用户注册赠送积分活动 1349331
关于科研通互助平台的介绍 1308812