Real-time image-based air quality estimation by deep learning neural networks

空气质量指数 卷积神经网络 深度学习 人工神经网络 人工智能 计算机科学 色调 机器学习 地理 气象学
作者
Pu-Yun Kow,I-Wen Hsia,Li-Chiu Chang,Fi-John Chang
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:307: 114560-114560 被引量:4
标识
DOI:10.1016/j.jenvman.2022.114560
摘要

Air quality profoundly impacts public health and environmental equity. Efficient and inexpensive air quality monitoring instruments could be greatly beneficial for human health and air pollution control. This study proposes an image-based deep learning model (CNN-RC) that integrates a convolutional neural network (CNN) and a regression classifier (RC) to estimate air quality at areas of interest through feature extraction from photos and feature classification into air quality levels. The models were trained and tested on datasets with different combinations of the current image, the baseline image, and HSV (hue, saturation, value) statistics for increasing model reliability and estimation accuracy. A total of 3549 hourly air quality datasets (including photos, PM2.5, PM10, and the air quality index (AQI)) collected at the Linyuan air quality monitoring station of Kaohsiung City in Taiwan constituted the case study. The main breakthrough of this study is to timely produce an accurate image-based estimation of several pollutants simultaneously by using only one single deep learning model. The test results show that estimation accuracy in terms of R2 for PM2.5, PM10, and AQI based on daytime (nighttime) images reaches 76% (83%), 84% (84%), and 76% (74%), respectively, which demonstrates the great capability of our method. The proposed model offers a promising solution for rapid and reliable multi-pollutant estimation and classification based solely on captured images. This readily scalable measurement approach could address major gaps between air quality data acquired from expensive instruments worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助叶未晞yi采纳,获得10
刚刚
刚刚
su发布了新的文献求助10
1秒前
123456789完成签到,获得积分10
3秒前
炙热的如柏完成签到,获得积分20
3秒前
4秒前
5秒前
HWei完成签到,获得积分10
5秒前
Ryan完成签到,获得积分10
5秒前
6秒前
Jzhang应助丙队长采纳,获得10
8秒前
9秒前
GXY发布了新的文献求助30
10秒前
Lucas应助专注秋尽采纳,获得10
10秒前
10秒前
754完成签到,获得积分10
10秒前
13秒前
学习猴发布了新的文献求助10
13秒前
充电宝应助炙热的如柏采纳,获得10
14秒前
所所应助qzaima采纳,获得10
14秒前
米兰达完成签到 ,获得积分0
15秒前
xg发布了新的文献求助10
17秒前
Loooong应助Ni采纳,获得10
18秒前
18秒前
WZ0904发布了新的文献求助10
18秒前
顾矜应助博ge采纳,获得10
20秒前
20秒前
Lotus发布了新的文献求助10
21秒前
22秒前
仁爱仙人掌完成签到,获得积分10
24秒前
ywang发布了新的文献求助10
24秒前
26秒前
26秒前
26秒前
ewqw关注了科研通微信公众号
27秒前
曦小蕊完成签到 ,获得积分10
27秒前
28秒前
29秒前
29秒前
奋斗灵波发布了新的文献求助10
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824