Real-time image-based air quality estimation by deep learning neural networks

空气质量指数 卷积神经网络 深度学习 人工神经网络 人工智能 计算机科学 色调 空气污染 机器学习 数据挖掘 地理 气象学 有机化学 化学
作者
Pu-Yun Kow,I-Wen Hsia,Li‐Chiu Chang,Fi‐John Chang
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:307: 114560-114560 被引量:39
标识
DOI:10.1016/j.jenvman.2022.114560
摘要

Air quality profoundly impacts public health and environmental equity. Efficient and inexpensive air quality monitoring instruments could be greatly beneficial for human health and air pollution control. This study proposes an image-based deep learning model (CNN-RC) that integrates a convolutional neural network (CNN) and a regression classifier (RC) to estimate air quality at areas of interest through feature extraction from photos and feature classification into air quality levels. The models were trained and tested on datasets with different combinations of the current image, the baseline image, and HSV (hue, saturation, value) statistics for increasing model reliability and estimation accuracy. A total of 3549 hourly air quality datasets (including photos, PM2.5, PM10, and the air quality index (AQI)) collected at the Linyuan air quality monitoring station of Kaohsiung City in Taiwan constituted the case study. The main breakthrough of this study is to timely produce an accurate image-based estimation of several pollutants simultaneously by using only one single deep learning model. The test results show that estimation accuracy in terms of R2 for PM2.5, PM10, and AQI based on daytime (nighttime) images reaches 76% (83%), 84% (84%), and 76% (74%), respectively, which demonstrates the great capability of our method. The proposed model offers a promising solution for rapid and reliable multi-pollutant estimation and classification based solely on captured images. This readily scalable measurement approach could address major gaps between air quality data acquired from expensive instruments worldwide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六六六发布了新的文献求助10
刚刚
科研通AI5应助111采纳,获得10
刚刚
布鲁爱思完成签到,获得积分10
刚刚
漂亮的人生完成签到,获得积分10
3秒前
6秒前
2213sss完成签到,获得积分10
8秒前
11秒前
12秒前
zho发布了新的文献求助10
16秒前
18秒前
19秒前
沸腾的大海完成签到,获得积分10
21秒前
23秒前
Gilana应助ixueyi采纳,获得10
23秒前
我是老大应助年轻的飞柏采纳,获得30
24秒前
25秒前
欣慰雪糕完成签到,获得积分10
25秒前
熊啊发布了新的文献求助10
26秒前
华仔应助小宋采纳,获得10
27秒前
刘亚茹发布了新的文献求助10
29秒前
欣慰雪糕发布了新的文献求助20
30秒前
开朗万天完成签到 ,获得积分10
31秒前
跳跳熊完成签到,获得积分10
31秒前
顾矜应助熊啊采纳,获得10
31秒前
33秒前
34秒前
归雁发布了新的文献求助30
35秒前
小枣发布了新的文献求助10
39秒前
身为风帆完成签到,获得积分10
39秒前
43秒前
化尾鱼完成签到,获得积分10
45秒前
46秒前
墨羽翔天完成签到,获得积分10
48秒前
49秒前
小宋发布了新的文献求助10
50秒前
50秒前
帅气的小鸭子完成签到,获得积分10
51秒前
CC发布了新的文献求助10
52秒前
傅英俊发布了新的文献求助10
52秒前
脑洞疼应助科研通管家采纳,获得10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761818
求助须知:如何正确求助?哪些是违规求助? 3305596
关于积分的说明 10134822
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658239
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751