球体
基质凝胶
自愈水凝胶
三维细胞培养
组织工程
材料科学
生物物理学
间充质干细胞
细胞生物学
细胞
细胞培养
生物医学工程
化学
生物
医学
生物化学
遗传学
高分子化学
作者
Se‐jeong Kim,Hayeon Byun,Sangmin Lee,Eunhyung Kim,Gyeong Min Lee,Seung Jae Huh,Jinmyoung Joo,Heungsoo Shin
标识
DOI:10.1016/j.actbio.2022.01.047
摘要
Mesenchymal stem cell spheroids have been encapsulated in hydrogels for various applications because spheroids demonstrate higher cell activity than individual cells in suspension. However, there is limited information on the effect of distance between spheroids (inter-spheroid distance) on fusion or migration in a hydrogel. In this study, we developed temperature-responsive hydrogels with surface microwell patterns to culture adipose-derived stem cell (ASC) spheroids and deliver them into a Matrigel for the investigation of the effect of inter-spheroid distance on spheroid behavior. The ASC spheroids were encapsulated successfully in a Matrigel, denoted as sandwich culture, with a specific inter-spheroid distance ranging from 100 to 400 µm. Interestingly, ASCs migrated from the host spheroid and formed a bridge-like structure between spheroids, denoted as a cellular bridge, only when the inter-spheroid distance was 200 µm. Thus, we performed a sandwich culture of human umbilical vein endothelial cells (HUVECs) and ASCs in co-cultured spheroids in the Matrigel to create a homogeneous endothelial cell network in the hydrogel. The HUVECs sprouted through the ASC cellular bridge and directly interacted with the adjacent spheroid when the inter-spheroid distance was 200 µm. Similar results were obtained from an in vivo study. Thus, our study suggests the appropriate inter-spheroid distance for effective spheroid encapsulation in a hydrogel. STATEMENT OF SIGNIFICANCE: Recently, spheroid-based 3D tissue culture techniques such as spheroid encapsulation or 3D printing are being intensively investigated for various purposes. However, there is limited research regarding the effect of the inter-spheroid distance on spheroid communication. Here, we demonstrate a spatially arranged spheroid encapsulation method within a Matrigel by using a temperature-responsive hydrogel. Human adipose-derived stem cell spheroids are encapsulated with a precisely controlled inter-spheroid distance from 100 to 400 µm and show different tendencies in cell migration and spheroid fusion. Our results suggest that the inter-spheroid distance affects spheroid communication, and thus, the inter-spheroid distance needs to be considered carefully according to the purpose.
科研通智能强力驱动
Strongly Powered by AbleSci AI