Detection of crop diseases using enhanced variability imagery data and convolutional neural networks

卷积神经网络 白粉病 计算机科学 人工智能 鉴定(生物学) 植物病害 模式识别(心理学) 作物 Rust(编程语言) 枯萎病 精准农业 农业工程 遥感 农业 农学 工程类 地理 生物技术 生物 生态学 程序设计语言
作者
Shai Kendler,Ran Aharoni,Sierra Young,Hanan Sela,Tamar Kis-Papo,Tzion Fahima,Barak Fishbain
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106732-106732 被引量:33
标识
DOI:10.1016/j.compag.2022.106732
摘要

• Crop disease identification based on short-range imaging and CNN. • The CNN is trained and used with real-life images. • Images are split into several patches resulting in a highly diverse dataset leading to a robust CNN. The timely detection of crop diseases is critical for securing crop productivity, lowering production costs, and minimizing agrochemical use. This study presents a crop disease identification method that is based on Convolutional Neural Networks (CNN) trained on images taken with consumer-grade cameras. Specifically, this study addresses the early detection of wheat yellow rust, stem rust, powdery mildew, potato late blight, and wild barley net blotch. To facilitate this, pictures were taken in situ without modifying the scene, the background, or controlling the illumination. Each image was then split into several patches, thus retaining the original spatial resolution of the image while allowing for data variability. The resulting dataset was highly diverse since the disease manifestation, imaging geometry, and illumination varied from patch to patch. This diverse dataset was used to train various CNN architectures to find the best match. The resulting classification accuracy was 95.4 ± 0.4%. These promising results lay the groundwork for autonomous early detection of plant diseases. Guidelines for implementing this approach in realistic conditions are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
123zsr完成签到,获得积分20
2秒前
SYLH应助LMDD采纳,获得10
2秒前
BlackP应助LMDD采纳,获得10
3秒前
脑洞疼应助LMDD采纳,获得10
3秒前
5秒前
蹇蹇完成签到 ,获得积分10
5秒前
燕子发布了新的文献求助10
5秒前
8秒前
10秒前
英俊的铭应助舒心的秋荷采纳,获得10
11秒前
留白留白关注了科研通微信公众号
11秒前
15秒前
phil完成签到,获得积分10
16秒前
17秒前
17秒前
nini关注了科研通微信公众号
18秒前
动听安筠完成签到 ,获得积分10
20秒前
善学以致用应助十一采纳,获得10
22秒前
阿发发布了新的文献求助10
22秒前
Ava应助111采纳,获得10
23秒前
liang19640908完成签到 ,获得积分10
23秒前
NIUB发布了新的文献求助10
23秒前
25秒前
科研小狗完成签到,获得积分10
27秒前
28秒前
fengbeing完成签到,获得积分10
30秒前
30秒前
默默的棒棒糖完成签到 ,获得积分10
30秒前
小白应助今天看文献了吗采纳,获得20
31秒前
31秒前
FashionBoy应助叡叡采纳,获得10
31秒前
32秒前
蒙蒙细雨完成签到,获得积分10
33秒前
34秒前
SAVP发布了新的文献求助10
34秒前
36秒前
111完成签到,获得积分20
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
A proof-of-concept study on a universal standard kit to evaluate the risks of inspectors for their foundational ability of visual inspection of injectable drug products 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3696461
求助须知:如何正确求助?哪些是违规求助? 3248331
关于积分的说明 9857134
捐赠科研通 2959780
什么是DOI,文献DOI怎么找? 1622900
邀请新用户注册赠送积分活动 768341
科研通“疑难数据库(出版商)”最低求助积分说明 741511