Reproducibility of developmental neuroplasticity in in vitro brain tissue models

神经科学 神经发生 药物开发 神经血管束 神经可塑性 人脑 医学 生物 计算机科学 生物信息学 生物医学工程 病理 药品 药理学
作者
А. Б. Салмина,N. A. Malinovskaya,А. В. Моргун,Е. Д. Хилажева,Yu. A. Uspenskaya,С. Н. Иллариошкин
出处
期刊:Reviews in The Neurosciences [De Gruyter]
卷期号:33 (5): 531-554 被引量:2
标识
DOI:10.1515/revneuro-2021-0137
摘要

Abstract The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood–brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助淋湿的雨采纳,获得10
1秒前
yull完成签到,获得积分10
1秒前
Misty发布了新的文献求助10
1秒前
2秒前
彭于彦祖应助Alex爱大家采纳,获得10
2秒前
3秒前
晏清发布了新的文献求助10
3秒前
4秒前
韩靖仇完成签到,获得积分10
4秒前
情怀应助默默的橘子采纳,获得30
5秒前
5秒前
6秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
直率千青完成签到,获得积分10
8秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
zhangyifan666应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
ziyue应助科研通管家采纳,获得10
9秒前
敬老院N号应助科研通管家采纳,获得30
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
渤海少年发布了新的文献求助10
9秒前
长雁应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
wang应助科研通管家采纳,获得10
9秒前
ddd发布了新的文献求助10
9秒前
共享精神应助张土豆采纳,获得10
10秒前
猩心完成签到,获得积分10
11秒前
温梦花雨发布了新的文献求助10
12秒前
心海发布了新的文献求助10
13秒前
childe完成签到,获得积分10
14秒前
猩心发布了新的文献求助10
14秒前
SciGPT应助晏清采纳,获得10
17秒前
心海完成签到,获得积分10
19秒前
qiqi完成签到,获得积分10
21秒前
22秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734603
求助须知:如何正确求助?哪些是违规求助? 3278545
关于积分的说明 10009929
捐赠科研通 2995186
什么是DOI,文献DOI怎么找? 1643254
邀请新用户注册赠送积分活动 781019
科研通“疑难数据库(出版商)”最低求助积分说明 749199