重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Intelligent Driver Drowsiness Detection for Traffic Safety Based on Multi CNN Deep Model and Facial Subsampling

计算机科学 支持向量机 特征提取 人工智能 分散注意力 水准点(测量) 模式识别(心理学) 集成学习 面子(社会学概念) 深度学习 计算机视觉 特征(语言学) 机器学习 社会科学 语言学 哲学 大地测量学 神经科学 社会学 生物 地理
作者
Muneeb Ahmed,Sarfaraz Masood,Musheer Ahmad,Ahmed A. Abd El‐Latif
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19743-19752 被引量:73
标识
DOI:10.1109/tits.2021.3134222
摘要

Facts reveal that numerous road accidents worldwide occur due to fatigue, drowsiness, and distraction while driving. Few works on the automated drowsiness detection problem, propose to extract physiological signals of the driver including ECG, EEG, heart variability rate, blood pressure, etc. which make those solutions non-ideal. While recent ones propose computer vision-based solutions but show limited performances as either they use hand-crafted features with conventional techniques like Naïve Bayes and SVM or use excessively bulky deep learning models which are still low on performances. Hence in this work, we propose an ensemble deep learning architecture that operates over incorporated features of eyes and mouth subsamples along with a decision structure to determine the fitness of the driver. The proposed ensemble model consists of only two InceptionV3 modules that help in containing the parameter space of the network. These two modules respectively and exclusively perform feature extraction of eyes and mouth subsamples extracted using the MTCNN from the face images. Their respective output is passed to the ensemble boundary using the weighted average method whose weights are tuned using the ensemble algorithm. The output of this system determines whether the driver is drowsy or non-drowsy. The benchmark NTHU-DDD video dataset is used for effective training and evaluation of the proposed model. The model established a train and validation accuracy of 99.65% and 98.5% respectively with an accuracy of 97.1% on the evaluation dataset which is significantly higher than those achieved by models proposed in recent works on this dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助wise111采纳,获得10
1秒前
1秒前
英俊的铭应助汪格森采纳,获得10
1秒前
1秒前
英俊的铭应助哇啦哇啦采纳,获得10
1秒前
郑苗苗发布了新的文献求助10
1秒前
传奇3应助Ding_RJ采纳,获得10
2秒前
佳丽发布了新的文献求助10
2秒前
酷波er应助苏苏采纳,获得10
2秒前
2秒前
ding应助tqs采纳,获得30
2秒前
JeKing完成签到,获得积分10
3秒前
t通发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
666完成签到,获得积分10
3秒前
wwwww发布了新的文献求助10
4秒前
4秒前
加菲丰丰应助专注思雁采纳,获得10
6秒前
andy完成签到,获得积分10
6秒前
乐乐应助夏晴晴采纳,获得10
6秒前
寒夜发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
大个应助单薄的小松鼠采纳,获得10
11秒前
天天快乐应助伊呀呀呀采纳,获得10
11秒前
11秒前
科研通AI6应助要减肥高山采纳,获得10
12秒前
12秒前
wwwww完成签到,获得积分20
13秒前
13秒前
ZZz完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739