Intelligent Driver Drowsiness Detection for Traffic Safety Based on Multi CNN Deep Model and Facial Subsampling

计算机科学 支持向量机 特征提取 人工智能 分散注意力 水准点(测量) 模式识别(心理学) 集成学习 面子(社会学概念) 深度学习 计算机视觉 特征(语言学) 机器学习 社会科学 语言学 哲学 大地测量学 神经科学 社会学 生物 地理
作者
Muneeb Ahmed,Sarfaraz Masood,Musheer Ahmad,Ahmed A. Abd El‐Latif
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19743-19752 被引量:50
标识
DOI:10.1109/tits.2021.3134222
摘要

Facts reveal that numerous road accidents worldwide occur due to fatigue, drowsiness, and distraction while driving. Few works on the automated drowsiness detection problem, propose to extract physiological signals of the driver including ECG, EEG, heart variability rate, blood pressure, etc. which make those solutions non-ideal. While recent ones propose computer vision-based solutions but show limited performances as either they use hand-crafted features with conventional techniques like Naïve Bayes and SVM or use excessively bulky deep learning models which are still low on performances. Hence in this work, we propose an ensemble deep learning architecture that operates over incorporated features of eyes and mouth subsamples along with a decision structure to determine the fitness of the driver. The proposed ensemble model consists of only two InceptionV3 modules that help in containing the parameter space of the network. These two modules respectively and exclusively perform feature extraction of eyes and mouth subsamples extracted using the MTCNN from the face images. Their respective output is passed to the ensemble boundary using the weighted average method whose weights are tuned using the ensemble algorithm. The output of this system determines whether the driver is drowsy or non-drowsy. The benchmark NTHU-DDD video dataset is used for effective training and evaluation of the proposed model. The model established a train and validation accuracy of 99.65% and 98.5% respectively with an accuracy of 97.1% on the evaluation dataset which is significantly higher than those achieved by models proposed in recent works on this dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助逍遥解牛采纳,获得10
刚刚
打工人完成签到,获得积分10
1秒前
香蕉秋柳完成签到,获得积分10
1秒前
邓佳鑫Alan应助清秀的怀蕊采纳,获得10
1秒前
善学以致用应助vincy采纳,获得10
3秒前
dingxue完成签到,获得积分10
3秒前
3秒前
打工人发布了新的文献求助10
4秒前
桐桐应助瘦瘦白卉采纳,获得10
5秒前
5秒前
跳跃碧灵发布了新的文献求助10
7秒前
7秒前
8秒前
吱吱发布了新的文献求助10
8秒前
lulu完成签到,获得积分10
9秒前
9秒前
邓佳鑫Alan应助bian采纳,获得10
10秒前
11秒前
李爱国应助饱满绮玉W采纳,获得30
11秒前
nihao发布了新的文献求助10
11秒前
12秒前
明理怜烟关注了科研通微信公众号
13秒前
逍遥解牛发布了新的文献求助10
13秒前
vincy发布了新的文献求助10
15秒前
16秒前
IBMffff应助跳跃碧灵采纳,获得10
16秒前
lXiao应助番茄酱采纳,获得10
17秒前
17秒前
17秒前
18秒前
彭于晏应助依然灬聆听采纳,获得10
20秒前
foxp3发布了新的文献求助10
20秒前
紫熊发布了新的文献求助10
21秒前
21秒前
郑海香完成签到,获得积分10
22秒前
liusui发布了新的文献求助10
23秒前
23秒前
张张张完成签到 ,获得积分10
23秒前
24秒前
mangle完成签到,获得积分10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125274
求助须知:如何正确求助?哪些是违规求助? 2775580
关于积分的说明 7727081
捐赠科研通 2431059
什么是DOI,文献DOI怎么找? 1291657
科研通“疑难数据库(出版商)”最低求助积分说明 622216
版权声明 600368