Learning-Based Branch-and-Price Algorithms for the Vehicle Routing Problem with Time Windows and Two-Dimensional Loading Constraints

车辆路径问题 列生成 计算机科学 数学优化 分支和切割 算法 布线(电子设计自动化) 整数规划 数学 计算机网络
作者
Xiangyi Zhang,Lu Chen,Michel Gendreau,André Langevin
出处
期刊:Informs Journal on Computing 卷期号:34 (3): 1419-1436 被引量:28
标识
DOI:10.1287/ijoc.2021.1110
摘要

A capacitated vehicle routing problem with two-dimensional loading constraints is addressed. Associated with each customer are a set of rectangular items, the total weight of the items, and a time window. Designing exact algorithms for the problem is very challenging because the problem is a combination of two NP-hard problems. An exact branch-and-price algorithm and an approximate counterpart are proposed to solve the problem. We introduce an exact dominance rule and an approximate dominance rule. To cope with the difficulty brought by the loading constraints, a new column generation mechanism boosted by a supervised learning model is proposed. Extensive experiments demonstrate the superiority of integrating the learning model in terms of CPU time and calls of the feasibility checker. Moreover, the branch-and-price algorithms are able to significantly improve the solutions of the existing instances from literature and solve instances with up to 50 customers and 103 items. Summary of Contribution: We wish to submit an original research article entitled “Learning-based branch-and-price algorithms for a vehicle routing problem with time windows and two-dimensional loading constraints” for consideration by IJOC. We confirm that this work is original and has not been published elsewhere, nor is it currently under for publication elsewhere. In this paper, we report a study in which we develop two branch-and-price algorithms with a machine learning model injected to solve a vehicle routing problem integrated the two-dimensional packing. Due to the complexity brought by the integration, studies on exact algorithms in this field are very limited. Our study is important to the field, because we develop an effective method to significantly mitigate computational burden brought by the packing problem so that exactness turns to be achievable within reasonable time budget. The approach can be generalized to the three-dimensional case by simply replacing the packing algorithm. It can also be adapted for other VRPs when high-dimensional loading constraints are concerned. Broadly speaking, the study is a typical example of adopting supervised learning to achieve acceleration for operations research algorithms, which expands the envelop of computing and operations research. Hence, we believe this manuscript is appropriate for publication by IJOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZMJ完成签到,获得积分10
3秒前
Orange应助SJ7采纳,获得10
5秒前
酷酷的如波完成签到 ,获得积分10
7秒前
椰子发布了新的文献求助10
8秒前
我是老大应助只是听说采纳,获得10
9秒前
天亮polar完成签到,获得积分10
10秒前
12秒前
默默水蓝发布了新的文献求助10
12秒前
13秒前
虾虾发布了新的文献求助10
14秒前
15秒前
Lliu完成签到,获得积分10
15秒前
16秒前
TT001发布了新的文献求助30
19秒前
曼曼完成签到,获得积分10
21秒前
落寞代亦发布了新的文献求助10
21秒前
岳阳张震岳完成签到,获得积分10
21秒前
Linda发布了新的文献求助10
21秒前
22秒前
22秒前
24秒前
科研通AI2S应助曼曼采纳,获得30
24秒前
25秒前
阿良完成签到 ,获得积分10
25秒前
渊渟岳峙完成签到,获得积分10
26秒前
阿茗完成签到,获得积分10
27秒前
清秀的大山完成签到,获得积分10
28秒前
111111发布了新的文献求助10
29秒前
WANDour完成签到,获得积分10
31秒前
三石发布了新的文献求助10
31秒前
渊渟岳峙发布了新的文献求助10
33秒前
33秒前
33秒前
李爱国应助初末采纳,获得10
35秒前
Zhang完成签到,获得积分10
37秒前
孟一完成签到,获得积分10
39秒前
luoman5656完成签到,获得积分10
39秒前
机灵又蓝完成签到 ,获得积分10
40秒前
44秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331