亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transformers in Vision: A Survey

计算机科学 变压器 分割 人工智能 可扩展性 图像处理 计算机视觉 数据库 图像(数学) 量子力学 物理 电压
作者
Salman Khan,Muzammal Naseer,Munawar Hayat,Syed Waqas Zamir,Fahad Shahbaz Khan,Mubarak Shah
出处
期刊:ACM Computing Surveys [Association for Computing Machinery]
卷期号:54 (10s): 1-41 被引量:1586
标识
DOI:10.1145/3505244
摘要

Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks, e.g., Long short-term memory. Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text, and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers, i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization), and three-dimensional analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges toward the application of transformer models in computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ah_junlei完成签到,获得积分10
4秒前
xiong发布了新的文献求助30
6秒前
熊一只发布了新的文献求助10
18秒前
hty完成签到 ,获得积分10
20秒前
Jasper应助清雨采纳,获得10
22秒前
思源应助熊一只采纳,获得10
27秒前
30秒前
30秒前
清雨发布了新的文献求助10
34秒前
清雨完成签到,获得积分10
47秒前
循循完成签到,获得积分10
48秒前
55秒前
58秒前
samuel发布了新的文献求助10
59秒前
hugo发布了新的文献求助10
1分钟前
1分钟前
lsx发布了新的文献求助20
1分钟前
azuzuzu关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
科研完成签到 ,获得积分10
1分钟前
香蕉觅云应助hugo采纳,获得10
1分钟前
TheaGao完成签到 ,获得积分10
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
lsx完成签到,获得积分10
1分钟前
叁壶薏苡完成签到,获得积分20
1分钟前
叁壶薏苡发布了新的文献求助10
1分钟前
1分钟前
1分钟前
poegtam发布了新的文献求助30
2分钟前
wongcong发布了新的文献求助10
2分钟前
poegtam完成签到,获得积分10
2分钟前
李健应助叁壶薏苡采纳,获得10
2分钟前
姆姆没买完成签到 ,获得积分10
2分钟前
科研通AI2S应助Thorns采纳,获得10
2分钟前
Thanatos完成签到,获得积分10
2分钟前
2分钟前
喵喵完成签到 ,获得积分10
2分钟前
孤鸿.完成签到 ,获得积分10
2分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813318
关于积分的说明 7899645
捐赠科研通 2472733
什么是DOI,文献DOI怎么找? 1316507
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142