Waste Reduction of Perishable Products through Markdowns at Expiry Dates

利润(经济学) 经济订货量 多项式logistic回归 订单(交换) 缩放比例 数学优化 动态定价 产品(数学) 提前期 易腐性 计算机科学 计量经济学 数学 经济 微观经济学 统计 运营管理 业务 营销 供应链 财务 几何学
作者
Arnoud V. den Boer,H.M. Jansen,Jinglong Zhao
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:5
标识
DOI:10.2139/ssrn.4151451
摘要

We study the question whether giving discounts for perishable products on their expiry dates can simultaneously reduce waste and increase profit. In this paper, we consider a seller of a single perishable product who daily replenishes inventory up to a certain order-up-to level, and who serves customers whose purchase probabilities both depend on price and on the remaining shelf life of the product. We model the inventory dynamics as a Markov process and show that the system admits a unique stationary distribution. This distribution does not lead to informative expressions concerning the optimal discount or magnitude of waste reduction, and the absence of any structural properties make numerical optimization computationally challenging. We therefore consider a scaling limit in which both the customers' arrival rate and the order-up-to level grow at the same rate. We prove that the scaled system converges to a deterministic dynamical system and that the latter has a globally attracting fixed point. As a result, the scaled inventory levels converge to non-random values, which allows us to derive explicit expressions for expected waste and profit in this asymptotic regime. In a multinomial logit demand setting we show that optimizing expected profit by both optimizing regular prices and discounts reduces waste compared to only optimizing regular prices and not giving discounts. If the order-up-to level is also a decision variable, waste will be zero (in the scaling limit) and profit cannot be further improved by giving discounts. Our results imply that sellers of perishable products can use simple pricing rules to simultaneously reduce waste and increase profit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周大悦完成签到 ,获得积分20
1秒前
鳗鱼衣完成签到 ,获得积分10
1秒前
1秒前
天天快乐应助鄂老三采纳,获得10
2秒前
小羊完成签到 ,获得积分10
2秒前
fuwei完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
原本发布了新的文献求助10
3秒前
炙热南露发布了新的文献求助30
3秒前
无花果应助孤独的心锁采纳,获得10
3秒前
JoeyCho完成签到,获得积分20
5秒前
科研通AI5应助盐植物采纳,获得10
5秒前
感谢znq051210转发科研通微信,获得积分50
6秒前
猪猪hero发布了新的文献求助10
6秒前
7秒前
快乐的胖子应助susu采纳,获得30
9秒前
我是老大应助彩虹糖采纳,获得10
10秒前
科研通AI5应助xxxxc采纳,获得10
11秒前
yuqiu发布了新的文献求助30
11秒前
11秒前
木土土完成签到,获得积分10
11秒前
ding应助攀攀采纳,获得10
11秒前
感谢Shylie转发科研通微信,获得积分50
11秒前
麦益颖完成签到,获得积分10
12秒前
在人中发布了新的文献求助10
12秒前
dandan完成签到 ,获得积分20
14秒前
14秒前
15秒前
16秒前
16秒前
浮游应助三二采纳,获得10
17秒前
17秒前
cantaloupe完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
111完成签到,获得积分10
18秒前
负责惜文完成签到 ,获得积分10
18秒前
科研通AI6应助cyt9999采纳,获得10
18秒前
18秒前
王阳洋发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933690
求助须知:如何正确求助?哪些是违规求助? 4201746
关于积分的说明 13054958
捐赠科研通 3975817
什么是DOI,文献DOI怎么找? 2178602
邀请新用户注册赠送积分活动 1194932
关于科研通互助平台的介绍 1106316