Waste Reduction of Perishable Products through Markdowns at Expiry Dates

利润(经济学) 经济订货量 多项式logistic回归 订单(交换) 缩放比例 数学优化 动态定价 产品(数学) 提前期 易腐性 计算机科学 计量经济学 数学 经济 微观经济学 统计 运营管理 业务 营销 供应链 几何学 财务
作者
Arnoud V. den Boer,H.M. Jansen,Jinglong Zhao
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:5
标识
DOI:10.2139/ssrn.4151451
摘要

We study the question whether giving discounts for perishable products on their expiry dates can simultaneously reduce waste and increase profit. In this paper, we consider a seller of a single perishable product who daily replenishes inventory up to a certain order-up-to level, and who serves customers whose purchase probabilities both depend on price and on the remaining shelf life of the product. We model the inventory dynamics as a Markov process and show that the system admits a unique stationary distribution. This distribution does not lead to informative expressions concerning the optimal discount or magnitude of waste reduction, and the absence of any structural properties make numerical optimization computationally challenging. We therefore consider a scaling limit in which both the customers' arrival rate and the order-up-to level grow at the same rate. We prove that the scaled system converges to a deterministic dynamical system and that the latter has a globally attracting fixed point. As a result, the scaled inventory levels converge to non-random values, which allows us to derive explicit expressions for expected waste and profit in this asymptotic regime. In a multinomial logit demand setting we show that optimizing expected profit by both optimizing regular prices and discounts reduces waste compared to only optimizing regular prices and not giving discounts. If the order-up-to level is also a decision variable, waste will be zero (in the scaling limit) and profit cannot be further improved by giving discounts. Our results imply that sellers of perishable products can use simple pricing rules to simultaneously reduce waste and increase profit.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含糊的玲完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
薯片完成签到,获得积分10
1秒前
123116011411完成签到,获得积分20
1秒前
1秒前
动听以晴发布了新的文献求助10
1秒前
慢慢发布了新的文献求助10
1秒前
SciGPT应助惠葶采纳,获得10
2秒前
2秒前
3秒前
tcf应助清雅采纳,获得10
3秒前
迷之XX完成签到,获得积分10
3秒前
科研通AI2S应助叶长安采纳,获得10
3秒前
3秒前
4秒前
lily发布了新的文献求助10
4秒前
jack1511发布了新的文献求助10
4秒前
2024011023发布了新的文献求助10
4秒前
KFjiatang完成签到,获得积分10
4秒前
mfy0068完成签到,获得积分10
4秒前
墨西哥猪肉卷完成签到,获得积分10
4秒前
旷意发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
含糊的玲发布了新的文献求助10
4秒前
斯文败类应助小管采纳,获得10
5秒前
默许冰心完成签到,获得积分10
5秒前
6秒前
冬青ouo完成签到,获得积分10
6秒前
7秒前
上官若男应助夕荀采纳,获得10
7秒前
细腻砖头应助邹益春采纳,获得10
7秒前
7秒前
WD发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
Li应助hsa_ID采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629869
求助须知:如何正确求助?哪些是违规求助? 4720921
关于积分的说明 14971132
捐赠科研通 4787826
什么是DOI,文献DOI怎么找? 2556570
邀请新用户注册赠送积分活动 1517709
关于科研通互助平台的介绍 1478285