Waste Reduction of Perishable Products through Markdowns at Expiry Dates

利润(经济学) 经济订货量 多项式logistic回归 订单(交换) 缩放比例 数学优化 动态定价 产品(数学) 提前期 易腐性 计算机科学 计量经济学 数学 经济 微观经济学 统计 运营管理 业务 营销 供应链 几何学 财务
作者
Arnoud V. den Boer,H.M. Jansen,Jinglong Zhao
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:5
标识
DOI:10.2139/ssrn.4151451
摘要

We study the question whether giving discounts for perishable products on their expiry dates can simultaneously reduce waste and increase profit. In this paper, we consider a seller of a single perishable product who daily replenishes inventory up to a certain order-up-to level, and who serves customers whose purchase probabilities both depend on price and on the remaining shelf life of the product. We model the inventory dynamics as a Markov process and show that the system admits a unique stationary distribution. This distribution does not lead to informative expressions concerning the optimal discount or magnitude of waste reduction, and the absence of any structural properties make numerical optimization computationally challenging. We therefore consider a scaling limit in which both the customers' arrival rate and the order-up-to level grow at the same rate. We prove that the scaled system converges to a deterministic dynamical system and that the latter has a globally attracting fixed point. As a result, the scaled inventory levels converge to non-random values, which allows us to derive explicit expressions for expected waste and profit in this asymptotic regime. In a multinomial logit demand setting we show that optimizing expected profit by both optimizing regular prices and discounts reduces waste compared to only optimizing regular prices and not giving discounts. If the order-up-to level is also a decision variable, waste will be zero (in the scaling limit) and profit cannot be further improved by giving discounts. Our results imply that sellers of perishable products can use simple pricing rules to simultaneously reduce waste and increase profit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洽洽瓜子shine完成签到,获得积分10
刚刚
简单的大白菜真实的钥匙完成签到,获得积分10
1秒前
2秒前
一独白完成签到,获得积分10
3秒前
在水一方应助坚强的樱采纳,获得10
3秒前
慕青应助尼亚吉拉采纳,获得10
4秒前
快乐小白菜应助甜酱采纳,获得10
4秒前
4秒前
qq应助毛慢慢采纳,获得10
5秒前
5秒前
科研通AI5应助吴岳采纳,获得10
5秒前
天天快乐应助ufuon采纳,获得10
6秒前
科研通AI5应助一独白采纳,获得10
7秒前
hearts_j完成签到,获得积分10
7秒前
FashionBoy应助yasan采纳,获得10
7秒前
安琪琪完成签到,获得积分10
8秒前
8秒前
端庄千琴完成签到,获得积分10
8秒前
gaogao完成签到,获得积分10
8秒前
菲菲公主完成签到,获得积分10
9秒前
9秒前
9秒前
英姑应助柒八染采纳,获得10
10秒前
退堂鼓发布了新的文献求助10
10秒前
党弛完成签到,获得积分10
10秒前
10秒前
11秒前
烂漫的松完成签到,获得积分10
11秒前
cheryl完成签到,获得积分10
11秒前
笑笑发布了新的文献求助10
12秒前
13秒前
14秒前
糟糕的霆完成签到 ,获得积分10
14秒前
婷婷发布了新的文献求助10
14秒前
14秒前
Anxinxin发布了新的文献求助10
14秒前
CipherSage应助xyz采纳,获得10
15秒前
15秒前
脑洞疼应助mjj采纳,获得10
15秒前
good关注了科研通微信公众号
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762