An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks

人工智能 乳腺摄影术 计算机科学 残余物 分类器(UML) 乳房成像 人工神经网络 分割 模式识别(心理学) 机器学习 计算机辅助诊断 数字乳腺摄影术 乳腺癌 医学 算法 癌症 内科学
作者
Asma Baccouche,Begonya Garcia-Zapirain,Adel Elmaghraby
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:4
标识
DOI:10.1038/s41598-022-15632-6
摘要

Abstract A computer-aided diagnosis (CAD) system requires automated stages of tumor detection, segmentation, and classification that are integrated sequentially into one framework to assist the radiologists with a final diagnosis decision. In this paper, we introduce the final step of breast mass classification and diagnosis using a stacked ensemble of residual neural network (ResNet) models (i.e. ResNet50V2, ResNet101V2, and ResNet152V2). The work presents the task of classifying the detected and segmented breast masses into malignant or benign, and diagnosing the Breast Imaging Reporting and Data System (BI-RADS) assessment category with a score from 2 to 6 and the shape as oval, round, lobulated, or irregular. The proposed methodology was evaluated on two publicly available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Comparative experiments were conducted on the individual models and an average ensemble of models with an XGBoost classifier. Qualitative and quantitative results show that the proposed model achieved better performance for (1) Pathology classification with an accuracy of 95.13%, 99.20%, and 95.88%; (2) BI-RADS category classification with an accuracy of 85.38%, 99%, and 96.08% respectively on CBIS-DDSM, INbreast, and the private dataset; and (3) shape classification with 90.02% on the CBIS-DDSM dataset. Our results demonstrate that our proposed integrated framework could benefit from all automated stages to outperform the latest deep learning methodologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Antibody完成签到 ,获得积分10
1秒前
2秒前
小青椒应助水心采纳,获得50
3秒前
情怀应助真不叫阿呆采纳,获得10
4秒前
Zhao完成签到 ,获得积分10
4秒前
star应助E9采纳,获得10
5秒前
6秒前
VESong发布了新的文献求助10
6秒前
7秒前
7秒前
浮游应助熊猫海采纳,获得10
8秒前
zzz完成签到,获得积分10
8秒前
11秒前
11秒前
11秒前
12秒前
zhangwenkang发布了新的文献求助30
15秒前
joy发布了新的文献求助30
15秒前
熊猫海完成签到,获得积分10
16秒前
巴斯光年发布了新的文献求助10
18秒前
mypang发布了新的文献求助10
18秒前
沙漠水发布了新的文献求助10
18秒前
浮游应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
发财总完成签到,获得积分20
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
19秒前
大模型应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
罗QQ完成签到 ,获得积分10
20秒前
852应助科研通管家采纳,获得10
20秒前
ccm应助科研通管家采纳,获得50
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288713
求助须知:如何正确求助?哪些是违规求助? 4440504
关于积分的说明 13824786
捐赠科研通 4322792
什么是DOI,文献DOI怎么找? 2372749
邀请新用户注册赠送积分活动 1368214
关于科研通互助平台的介绍 1332093