An integrated framework for breast mass classification and diagnosis using stacked ensemble of residual neural networks

人工智能 乳腺摄影术 计算机科学 残余物 分类器(UML) 乳房成像 人工神经网络 分割 模式识别(心理学) 机器学习 计算机辅助诊断 数字乳腺摄影术 乳腺癌 医学 算法 癌症 内科学
作者
Asma Baccouche,Begonya Garcia-Zapirain,Adel Elmaghraby
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:4
标识
DOI:10.1038/s41598-022-15632-6
摘要

Abstract A computer-aided diagnosis (CAD) system requires automated stages of tumor detection, segmentation, and classification that are integrated sequentially into one framework to assist the radiologists with a final diagnosis decision. In this paper, we introduce the final step of breast mass classification and diagnosis using a stacked ensemble of residual neural network (ResNet) models (i.e. ResNet50V2, ResNet101V2, and ResNet152V2). The work presents the task of classifying the detected and segmented breast masses into malignant or benign, and diagnosing the Breast Imaging Reporting and Data System (BI-RADS) assessment category with a score from 2 to 6 and the shape as oval, round, lobulated, or irregular. The proposed methodology was evaluated on two publicly available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Comparative experiments were conducted on the individual models and an average ensemble of models with an XGBoost classifier. Qualitative and quantitative results show that the proposed model achieved better performance for (1) Pathology classification with an accuracy of 95.13%, 99.20%, and 95.88%; (2) BI-RADS category classification with an accuracy of 85.38%, 99%, and 96.08% respectively on CBIS-DDSM, INbreast, and the private dataset; and (3) shape classification with 90.02% on the CBIS-DDSM dataset. Our results demonstrate that our proposed integrated framework could benefit from all automated stages to outperform the latest deep learning methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
geats发布了新的文献求助10
刚刚
xxfsx应助yshj采纳,获得10
刚刚
光明磊落发布了新的文献求助10
1秒前
逍遥完成签到 ,获得积分10
2秒前
打打应助夏蝉采纳,获得10
3秒前
智文发布了新的文献求助10
3秒前
油油完成签到 ,获得积分10
3秒前
4秒前
赘婿应助瓜姐采纳,获得10
4秒前
4秒前
今后应助务实路灯采纳,获得10
5秒前
科研通AI6应助称心鸵鸟采纳,获得10
5秒前
嵇元容完成签到 ,获得积分10
6秒前
cy完成签到,获得积分10
6秒前
小灵通完成签到,获得积分10
6秒前
haoboshi完成签到 ,获得积分10
6秒前
7秒前
情怀应助橙子采纳,获得10
8秒前
9秒前
赵雅婷完成签到,获得积分10
9秒前
Sc发布了新的文献求助10
9秒前
10秒前
12秒前
王先进完成签到,获得积分20
13秒前
cy发布了新的文献求助10
13秒前
14秒前
14秒前
zy发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
17秒前
17秒前
biyeshunli发布了新的文献求助10
18秒前
FashionBoy应助单原子的世界采纳,获得10
18秒前
复杂千亦发布了新的文献求助10
18秒前
jojo发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507548
求助须知:如何正确求助?哪些是违规求助? 4603165
关于积分的说明 14483971
捐赠科研通 4536922
什么是DOI,文献DOI怎么找? 2486485
邀请新用户注册赠送积分活动 1469074
关于科研通互助平台的介绍 1441411